Reference : Couplings between Normal Modes studied by the Correlation Function. Duschinsky Effect an...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Chemistry
Couplings between Normal Modes studied by the Correlation Function. Duschinsky Effect and Fermi Resonance.
[fr] Couplages entre modes normaux étudiés par la fonction de corrélation. Effet Duschinsky et résonance de Fermi.
Pavlov-Verevkin, V. B. [ > > ]
Leyh, Bernard mailto [Université de Liège - ULg > Département de chimie (sciences) > Laboratoire de dynamique moléculaire >]
Lorquet, Jean-Claude mailto [Université de Liège - ULg > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences) >]
Chemical Physics
Elsevier Science
Yes (verified by ORBi)
The Netherlands
[en] Photoelectron spectroscopy ; Correlation function ; Vibrational couplings ; Fermi resonance ; Duschinsky effect
[en] The dynamical information contained in a correlation function obtained by the Fourier transform of an electronic spectrum can be used to study strong intermode couplings, such as the Duschinsky effect (DE) and the Fermi resonance (FR). Both of them complicate the calculation of the correlation function by destroying its factorisability. In some particular cases, the DE can greatly simplify the form of the correlation function by concealing one of its inherent frequencies. The DE never leads to a beat or to a systematic decrease of the correlation function. A simple classical approximation for the correlation function which takes into account the Lissajous motion of the center of the wave packet, but does not allow for its deformation or spreading is found to be useful in a harmonic model. The FR leads to a beat in the correlation function which results from a periodic energy transfer from the active to the inactive mode. A practical method is given to extract the perturbed and unperturbed energies as well as the coupling matrix element of a FR from a low-resolution spectrum by Fourier transformation of just that part of the spectrum which corresponds to the quasidegenerate interacting states. The case of the B2Sigma+u state of CS2+ is treated as an example.
Laboratoire de Dynamique Moléculaire
Fonds de la Recherche Scientifique (Communauté française de Belgique) - FNRS, ARC

File(s) associated to this reference

Fulltext file(s):

Open access
Leyh_1989_Chem_Phys_175.pdfPublisher postprint556.21 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.