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COUPLINGS BETWEEN NORMAL MODES STUDIED BY THE CORRELATION FUNCTION.
DUSCHINSKY EFFECT AND FERMI RESONANCE
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The dynamical information contained in a correlation function obtained by the Fourier transform of an electronic spectrum
can be used to study strong intermode couplings, such as the Duschinsky effect (DE) and the Fermi resonance (FR). Both of
them complicate the calculation of the correlation function by destroying its factorizability. In some particular cases, the DE can
greatly simplify the form of the correlation function by concealing one of its inherent frequencies. The DE never leads to a beat
or to a systematic decrease of the correlation function. A simple classical approximation for the correlation function which takes
into account the Lissajous motion of the center of the wave packet, but does not allow for its deformation or spreading is found
to be useful in a harmonic model. The FR leads to a beat in the correlation function which results from a periodic energy transfer
from the active to the inactive mode. A practical method is given to extract the perturbed and unperturbed energies as well as the
coupling matrix element of a FR from a low-resolution spectrum by Fourier transformation of just that part of the spectrum which
corresponds to the quasidegenerate interacting states. The case of the B2Z} state of CS; is treated as an example.

1. Introduction

The information which can be obtained from the
study of an optical transition is not limited to ener-
getic and structural, i.e. to static aspects. Every di-
polar spectrum contains dynamical information ex-
pressed in terms of a correlation function which is
given by the Fourier transform of the optical profile.
In the case of electronic spectra, the correlation func-
tion provides information on the time evolution of a
wave packet on the potential energy surface of the
upper electronic state involved in an electronic tran-
sition [ 1-12]. In the Condon approximation, the op-
tical transition propels the vibrationless nuclear
wavefunction @ of the lower electronic state on the
potential energy surface of the upper electronic state.
&(¢) is then no longer a stationary wavefunction, but
a wave packet which propagates on the upper sur-
face. The Fourier transform of an electronic band is

equal to the time dependent overlap integral
(P|D(1)>
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and the correlation function, denoted C(z), is de-
fined to be the modulus of this quantity:

C(nH=1<2|2(1)>] . (1.2)

Eq. (1.1), which has been derived by Heller [1],
forms the basis of the correlation function method. It
establishes a link between spectroscopy and molecu-
lar dynamics and has been applied to a large number
of physicochemical problems [2-12].

We have chosen to apply the method to the study
of dynamical processes in ionized molecules. In this
case the initial information is a photoelectron spec-
trum. Practical problems peculiar to this method
concerning data handling, have been discussed in refs.
[5-9]. Approximate procedures have been devel-
oped to correct the original spectrum for finite en-
ergy resolution, Doppler and rotational widths, and
spin-orbit coupling.

In practice, however, these corrections become un-
reliable at times longer than 10~'3s (210~ '3 s at
most in favourable cases). Thus, the method pro-
vides information on the fate of a molecular ion dur-

(P|P(1)) = (1.1)
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ing the first few vibrational motions which immedi-
ately follow its creation. Hence, only ultrafast
processes brought about by very strong perturbations
can be studied by this technique. Non-adiabatic tran-
sitions induced by a conical intersection and even by
strong spin—orbit coupling have already been studied
both experimentally [6-8] and theoretically
[6,10,11] by this method. Weak perturbations such
as Coriolis coupling are not expected to lead to de-
tectable effects.

The present paper concentrates on two strong nu-
clear perturbations, i.e. the Duschinky effect (DE)
and the Fermi resonance (FR). The questions which
we wish to address are: How do these perturbations
affect a correlation function? What information about
the intermode couplings can be obtained from the
correlation function? Are they more easily detected
by this method than in an optical spectrum?

At this point, we wish to emphasize that our inter-
est is not in the development of theoretical proce-
dures to calculate a correlation function. Such meth-
ods can be found in numerous papers written by
Heller and co-workers [1-4], Koppel [10], Dehar-
eng [11,13], Brickmann [14], and others [9,12].
Instead, we wish to provide the experimentalist with
a few guidelines to help him to interpret qualitatively
a correlation function and to extract as much dynam-
ical information as possible. The paper is organized
as follows. The useful zero-order approximation
which consists in representing a correlation function
of a polyatomic molecule by a product of indepen-
dent diatomic-like functions is quickly reviewed in
section 2. Then, in sections 3 and 4, we discuss two
different types of intermode couplings, DE and FR,
which destroy this factorizability.

2. Factorization of the vibrational correlation function

In a polyatomic molecule, the correlation function
describes a nuclear motion which, in general, in-
volves several degrees of freedom simultaneously. It
is important to understand under what conditions this
function can be factorized into a product of one-di-
mensional functions describing the motion along one
normal coordinate only.

The normal coordinates of two electronic states in
a polyatomic molecule are in general related by

M
qjl-l= Z ajkq}(+bj, j=l,...,M, (2.1)
k=1

where the quantities b; are the differences in the equi-
librium positions of the two electronic states. The
matrix a; accounts for the rotation and scaling of the
normal coordinates, and M is equal to the number of
vibrational degrees of freedom. If the electronic states
in question are bound, then, by introducing mass-
weighted normal coordinates, one obtains and or-
thogonal matrix a; [15]. If the electronic transition
leads to dissociation, it is necessary to consider a more
general affine a; matrix [16,17].

Sufficient conditions of factorizability of the cor-
relation function can be formulated as follows.

(1) The lowest vibrational wavefunction of the first
electronic state must have the form

M
| P> = H. 7> (2.2)
j=

where the wave function |j) depends only on the
normal coordinate g;.

(2) The nuclear Hamiltonian of the upper elec-
tronic state should be separable into the normal co-
ordinates of this state

H'= S H(qh), (2.3)
k=1

i.e. the intermode coupling due to anharmonicity
should be unimportant.

(3) The a; matrix in (2.1) should be diagonal, i.e.
the DE should be negligible. In this case the normal
coordinates of the two states are related by

q}l =Alq.;+b/’ j=13"'!M' (2'4)

If all of these assumptions are valid, we can write
the expression for the correlation function in the form

c()= fl | (G exp(—iHI /) 1]y |

M M
=TT 1@ 1=T1 GO . (2.5)

The present paper discusses two types of inter-
mode mixing which prevent the factorization of the
correlation function. The first one is the DE for ac-
tive modes, which leads to the breakdown of assump-
tion (3). The second type of intermode mixing is that
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leading to the breakdown of assumption (2), the FR
between active and passive modes being the most
common example.

3. Duschinsky effect

To study the influence of the DE on the correlation
function we investigate a simple two-dimensional
model. The initial electronic state is characterized by
the normal coordinates {X, Y}, and the final one by
the set {x, y}. The potential surfaces of both states are
supposed to be harmonic. Thus, the vibrational
Hamiltonian for the initial electronic state in mass-
weighted coordinates has the form

H'=0.5(-%298%/0X%>=#%%0%/0Y?*+wiX?
+w3}Y?). (3.1)

The vibrational Hamiltonian for the final elec-
tronic state is obtained by replacing {X, Y} by {x, y}
in eq. (3.1). This simple model can be used to de-
scribe, e.g., the electronic and photoelectron spectra
of symmetric bent triatomic molecules when the ex-
citation of the final electronic state is not too high
and when there is no substantial energy transfer via
FR to the antisymmetric normal mode.

Before time t=0, our system is described by the
lowest vibrational wavefunction of the initial elec-
tronic state,

®=(ab/n?)Yexp[~0.5(aX?>+bY?)], (3.2)

with a=wy/#, b=wy/h. At t=0, it makes a Franck-
Condon transition to the final electronic state. To de-
scribe the evolution of the wave packet @(¢) on the
potential energy surface of the second electronic state,
we expand @ in the basis of the vibrational wave-
functions of the latter electronic state,

b= % e (x)0;(y) . (3.3)

To do this, it is necessary to know the relation be-
tween normal coordinates in the two electronic states.
In our case this relation can always be written

x=Xcosf—-Ysinb+a,
y=Xsin0+Ycos0+f. (3.4)

|

This relationship is represented in fig. 1. Using
(3.4) we can rewrite (3.2) in the form

®d=(ab/n?)/*exp[-0.5p(x—q)>—s] , (3.5)

where

p=acos?0+bsin30, (3.6a)
g=a+(1/2p)(b—a)(y—p)sin20, (3.6b)
s=(ab/2p)(y-B)*. (3.6c)

The coefficients c;;in (3.3) are given by

o= | [ axayo(x,) 20 670
= (abi/pm)”* [ dy g7(y) exp[—s(7)]
x [ (o) (ormny

xexp{—-0.5p(x—¢q)?] . (3.7)

The integrals over x were evaluated using available
analytical formulae [18]. After this, the integrals over
y were calculated numerically using a simple trape-
zoidal rule. Given the ¢;s, we can immediately write
the expression for the correlation function,

C(t)=<% |ckj|“

1/2
+ Z |ckj|2|cmnIzcos(wkj.nmt)> . (3°8)

kjsnm

Here, @y um= (Exj— Enm) /1, where the vibrational
energies, E,;, of H" are given by

E;;=hw (k+0.5) +%w,(j+0.5) . (3.9)

In order to illustrate the influence of the DE on the

Fig. 1. Mutual location of the coordinate systems of the two elec-
tronic states for a Duschinsky effect: X, Y are the coordinates of
the initial state; x, y, those of the final state.
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correlation function we calculated the latter for two
electronic states with wy=1600 cm~!, w,=3800
cm~', and w,=1400 cm~', @,=3200 cm~'. The
values of the frequencies were chosen to simulate the
potential energy surfaces of the ground electronic state
of H,O and the X 2B, electronic state of H,O*. How-
ever, since the DE is estimated [19] to be small in
this case, some additional flexibility was introduced
into the model. The correlation functions were cal-
culated for different values of the parameters ¢ and 6
describing the mutual location of the two electronic
states. The parameter p= (a?+ #%)'/? was taken to
be equal to 0.1 A. Such a value of p allowed us to ob-
tain substantial variations in the correlation function
for different values of 8 and ¢, while keeping the
number of significantly excited levels of the second
electronic state reasonably small. In practice some 20
to 40 terms were included in expansion (3.3).

One important point concerning the concept of DE
should be mentioned here. The mutual location of two
normal coordinate reference frames is described by
two groups of angular parameters (fig. 1). The first
group contains all the angles defining the direction of
the vector connecting the centers of the two coordi-
nate systems (angle ¢ in our case), whereas the sec-
ond contains all the angles fixing the mutual orien-
tation of the axes of the two systems (angle 6 in our
case). There is a significant difference between these
two groups of parameters for the following reason.
The parameters of the first group can be changed
without changing the parameters of the second group.
This is true in both reference frames. On the other
hand, this is not always the case for the second group
of parameters.

Usually, the DE is defined as arising from non-zero
values of the second group of parameters only. This
definition is appropriate when one studies the DE for
a fixed mutual position of the two systems of normal
coordinates. The situation is more complicated when
one is interested in the global features of the DE, i.e.
its dependence on angular parameters. In this case,
the physical content of the concept of a DE depends
upon which of the two coordinate systems is chosen
as a reference frame. For example, in a two-mode case
(fig. 1), if one works in the coordinate system of the
second electronic state, the DE is described by the
change of the angle 6 for constant values of p and ¢.
But, from the point of view of the initial electronic

state, this procedure results not only in a rotation of
the second system of coordinates but also in the dis-
placement of its center along a circle of radius p. Thus,
we see that for investigating the global features of the
DE, both groups of molecular parameters are
important.

The first question which arises within the frame-
work of the correlation function method is to what
extent a knowledge of the correlation function alone
allows one to determine the parameters, & and g. The
answer to this question can be easily obtained from
egs. (3.5)-(3.8). In table 1, we list all 6 invariant
pairs {6, ¢;} and their corresponding values o;,
7:(¥), s:(y), which give the same correlation function.

The existence of the most part of these invariant
pairs is caused by the symmetry properties of the har-
monic approximation. It follows that in real cases,
when the anharmonicity effects are small, it will be
very difficult (if possible at all) to obtain a unique
set of parameters 6 and ¢ from the correlation func-
tion only.

We shall study the DE from the point of view of
the final electronic state. This will help us to clarify
the physics underlying this effect. On the basis of the
results of numerous calculations, out of which we
present only those given in figs. 2 and 3, we can char-
acterize the deformation of the correlation function
due to the DE as follows:

(a) A significant change in the values of both the
angles 0 and g can change the qualitative aspects of
the correlation function.

(b) The correlation function is not very sensitive
to the exact values of 6 and ¢. Small variations result
in small and irregular changes in the relative heights
and positions of the peaks.

(c) Under no circumstances can the DE lead to a
systematic decrease or to a beat in the correlation
function.

(d) For particular values of the angle ¢ (9p=0 or
n/2), the correlation function of a two-dimensional
model resembles qualitatively that of a one-dimen-
sional system, whatever the value of 0 (see fig. 2). A
single frequency then appears in the correlation func-
tion, e.g. w,=1400 cm~! for the cases shown in fig.
2. The corresponding effect is known in the theory of
the vibrational spectra as the frequency scrambling
suppression [17].

In order to gain some additional insight in the de-
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Table 1
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The invariant pairs {6, ¢;} and their corresponding values a;, 8, 4;(), 5:(») from (3.6)

Case 0; 2 a; Bi a(y) si(y)
1 6 @ a B q(y) s(y)
2 n+0 9 a B a(y) s(y)
3 -0 n—p —o B -q(y) s(y)
4 n—¢ n—9 —a B -q(y) s(»)
5 0 n+e -« -8 —q(-y) s(-y)
6 n+d T+ - -B —q(-y) s(-y)
7 -0 -9 o -8 q(-y) s(-y)
8 n—0 -9 a -B qa(-y) s(-y)

b
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Fig. 2. Correlation function for a Duschinsky effect characterized
by an angle p=0°. Solid line: converged calculations with expan-
sion (3.1). Dashed line: classical approximation (3.12). Case (a):
0=0°; case (b): 6=30°; case (c): =60°; case (d): §=90°.

pendence of the correlation function on 6 and ¢, we
have introduced a classical approximation for the
correlation function. The validity of such an approx-
imation for describing the wave packet dynamics on
the multidimensional surfaces has been discussed
earlier [4,14,20-22]. As a first step we solved the
Ehrenfest equations with obvious initial conditions

x(0)>=a, <(y(0))>=4;

to obtain the trajectory of the center of the wave
packet on the potential energy surface of the final

PSS TR T T T |
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Fig. 3. Correlation function for a Duschinsky effect characterized
by an angle ¢=30°. Solid line: converged calculations with ex-
pansion (3.1). Dashed line: classical approximation (3.12). Case
(a): 6=0°; case (b): 8=30°; case (c): 8=60°; case (d):
6=-30°.

electronic state. This trajectory is described by the
equations

{x(t))=acosw.t,
y(t)>=PBcosw,t. (3.11)

To proceed further we assumed that the wave packet
remains undeformed during its motion. This should
be an acceptable first approximation in the present
case of a harmonic model. We define a classical cor-
relation function at moment ¢, denoted C,(2), as the
overlap integral between the initially created Gaus-
sian wave packet centered at the point (c, #) and the
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same wave packet centered at the point ((x(z)),
{y(t)>). This gives us the following simple expres-
sion for Cy(2):

Ca(t)=exp{—-0.25[aX?*(t)+bY?*(1)]}, (3.12)

where X(¢) and Y(¢) are the coordinates of the cen-
ter of the wave packet in the coordinate system of the
initial electronic state. The classical correlation func-
tions are shown in figs. 2 and 3 by dashed lines.

First of all we notice that, in spite of the severe sim-
plifications made, the classical correlation functions
reproduce surprisingly well the main features of the
exact correlation functions: the positions and rela-
tive heights of the peaks, and sometimes even the fine
structure of the latter. The classical correlation func-
tions possess the same symmetry with respect to
changes of 6 and ¢ as the exact ones. Moreover the
symmetry properties of the DE can be studied much
more easily from (3.12) than from (3.5)-(3.8).

At the classical level of approximation, the DE can
be split into two independent effects, to which we shall
refer as the dynamical and the geometrical DEs. The
dynamical DE is due to the change of the trajectory
of the center of the wave packet. It is characterized
by the corresponding Lissajous figure and depends
only on the angle . On the other hand, the geomet-
rical DE is due to the change of the mutual orienta-
tion of the two potential surfaces and depends only
on angle 8. This effect does not change the Lissajous
figure describing the motion. This separability of the
DE into two independent effects takes place only if
one adopts the referential of the final electronic state.
From the point of view of the initial electronic state,
the dynamical and geometrical DEs are mixed. In this
case, changing 6 not only changes the mutual orien-
tation of the two coordinate systems, but also changes
the corresponding Lissajous figure.

The frequency scrambling suppression effect [17]
is now readily understood. From the classical view-
point, such an effect occurs every time when the ini-
tial position of the center of the wave packet (, )
coincides with one of the axes of the second elec-
tronic state referential. In this case the corresponding
Lissajous figure reduces to a straight line, as for the
one-dimensional case. But there are still some impor-
tant differences with respect to the latter at both clas-
sical and quantal levels. Although the classical corre-
lation function in this case is strictly periodical with

a period determined by one of the frequencies it does
not behave as a cosine curve as for a really one-di-
mensional motion [9,22]. On the other hand, from
the quantum point of view, the equality {(x(¢) ) =0
does not prevent quantum pulsations (“‘breathing’)
of the wave packet along the coordinate x [14,20-
22]. Such pulsations also deform the simple cosine
form of the correlation function.

4. Fermi resonance

In this section, we study how the correlation func-
tion is perturbed by the second type of intermode
mixing, taking the usual FR as an example. Heller et
al. [3] have examined the systematic trends which
appear when the FR involves wavefunctions of in-
creasing energy for a given potential energy surface.
A very detailed study of the energy flow brought about
by a FR between two low-frequency ring torsional
modes of the ground state of benzophenone has been
recently carried out by Frederick et al. [23]. We
present here another example where all the parame-
ters which characterize a FR can be easily extracted
from the correlation function, although this infor-
mation is hidden in the photoelectron spectrum be-
cause of poor energy resolution.

Let us consider the following simplified model for
a FR. Three zero-order states |0), |1) and |2) dia-
gonalize the harmonic part, Hy,m, of the nuclear
Hamiltonian H of the upper electronic state,

Hharmli>=Hii|i> . (4'1)

States |1) and |2), which are nearly degenerate,
are coupled by anharmonic terms:

H12=<1|HI2>’ (4-2)

state |0) remaining uncoupled.

As a result of a very short light pulse, the vibration-
less wavefunction of the lower electronic state @ is
propelled towards the potential energy surface of the
upper electronic state. On the latter surface, it be-
comes a wave packet @(¢) which can be expanded
either in the basis of the eigenfunctions, {y;}, of H
(eq. (4.3)), or in the zero-order basis set, {|i)} (eq.
(4.7)),
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[ D(2)> =ao |wo)
+a, exp(—iEt/#h) exp(1AEt/2%) |y, )

+a, exp(—iEt/h) exp(—iAEt/2%) |y, ) , (4.3)

with a;= {y;| @). The energies, E;, of the eigenstates
v;are Ey=0, E,=E—-AE, E,=E+ }AE, with E and
AE given by

E=1(Hn +sz) ’
AE=[(H, —H»)*+4H},]'2.

(4.4a)
(4.4b)

The basis set {y;} is related to the set {|i)} by an
orthogonal transformation parameterized by an an-
gle y, y, being equal to |0),

w1 >=[1>cosy+[2)siny,

fyo)=—|1)siny+|2) cosy, (4.5)
with

tany=2H,,/(Hy,, —Hy,) . (4.6)
Then:

|P(1)>=a,10)

+exp(—iEt/%)[a, exp(iAEt/2#%) cos y

—a, exp(—iAEt/2%) siny] |1
+exp(—iEt/#)[a, exp(iAEt/2%) siny

+a, exp(—iAEt/2%) cosy](2) . (4.7)

Let us assume that state |2» does not carry any os-
cillator strength. Then:

[D(0)>=a,|0>+ (a, cosy—a, siny)|1> (4.8)

and

a, sin y+a, cos y=0. (4.9)
Then, the correlation function reads

C(t)=[T3+T3?+2T,T, cos(Et/%) cos(AEt/h)
—T1sin®2ysin(AEt/2%)

+2T,T, cos2ysin(Et/h) sin(AEt/24%)]'/?,
(4.10)

where T;=|(i|g)|? are the zero-order Franck-
Condon factors.

Eq. (4.10) shows that two frequencies appear in
the correlation function. The higher frequency (E/

%) gives rise to well-established oscillations in the
correlation function. The amplitude of this oscilla-
tion is modulated by a lower frequency AE/2#. This
phenomenon can be interpreted as arising from the
periodic energy transfer from the active to the inac-
tive mode and vice versa.

Such a situation is illustrated in fig. 4 for the case
of the B2X state of CS;" . The correlation function
has been determined from a spectrum published in
ref. [24]. Since the equilibrium geometries of the CS,
X 'z} and of the CS§ B2} states are similar, only
the (000) and (100) zero-order states of CSS are
populated. A FR exists, however, between (100) and
(020). This resonance leads to a decrease with time
of the amplitude of the high-frequency oscillation,
characterized by a frequency of 650 cm—!. Since the
coupling is relatively weak, and allows one to see only
the very beginning of the further increase of this vi-
bration, it is hard to determine the magnitude of AE
directly from the correlation function.

Much more insight into the FR is gained by consid-
ering the probability P;(¢) for the system to be in a
given zero-order state |i) at time ¢,

P()=|<i|D(1)>]*.

Straightforward algebra leads to the following
expressions:

(4.11)

Po(t)=To,

P,(t)=T,[cos?(AEt/2#h)
+cos22ysin2(AEt/24h)], (4.12)

P,(t)=T, sin®2ysin?( AEt/2%) . (4.13)

To derive the values of the parameters of the FR,
it is more convenient to calculate the Fourier trans-

c{t)

+ ~ 2 +
05l CS; B“Xu

NI BRI BRI R
5 10 15 20 t.107s

Fig. 4. Experimental correlation function of the B2X;} state of

Css.
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form F(t) of only that part of the spectrum that cor-
responds to the quasidegenerate states | 1) and [2).
It can be shown that

|[F(t)/F(0)|
= [cos?(AEt/2%) +cos?2ysin?( AEt/2h)]'/?
=[P, (8)/T\]">. (4.14)

This quantity goes through a minimum equal to
|cos y| for t=nh/AE.

. The modulus of the Fourier transform of the
B2X} (100)-(020) part of the CS, photoelectron
spectrum is displayed in fig. 5. One observes indeed
a minimum for r=1.4X10-'3 s. This value repre-
sents the period of the energy transfer between the
zero-order states. The minimum value of |F(t)/
F(0)] is equal to 0.496. This gives rise to y=30.1°
and AE=121 cm~'. From (4.4) and (4.6), one de-
duces the following zero-order values:

sz—H” =60 Cm_l ’ H12=52.5 cm~!.

As E was found to be equal to 650 cm~!, one fi-
nally obtains the following values for the energies and
zero-order frequencies:

v,=H,;;=620cm~', »v,=4H,,=340cm™"',
E| =590 cm ! ’ Ez =711cm~"'.

Thus, the correlation function provides a much
clearer picture of the Fermi resonance process and
allows an experimentalist to derive more easily both
the unperturbed and the perturbed energies as well as

the coupling element. Such information, although
present in the photoelectron spectrum, can only be

£
Flo)

0.8

05

csy B4y

N U BT BTN B
5 10 15 t.10%s

Fig. 5. Fourier transform of the (100)-(020) part of the photoe-
lectron spectrum of the B 227 state of CS3 (eq. (4.14)).

derived with a low accuracy from that spectrum even
after a deconvolution procedure [24].

5. Conclusions

Within the model considered, the DE can be viewed
as a combination of two independent effects: kine-
matic and geometrical. This leads to a very simple
explanation of the frequency scrambling suppression
effect. The classical approximation is sufficient to ac-
count for the gross features of the correlation func-
tion and to study the main perturbations brought
about by the DE. The latter can significantly change
the form of the correlation function with respect to a
simple factorized expression. In particular, it can
suppress one of its inherent frequencies. But it can-
not be held responsible for a beat of the correlation
function or for the slight overall decrease in time
which is often observed experimentally.

The correlation function method is characterized
by a time scale which ranges between 10~'4to 10~'?
s, and hence is ideally suited to study ultrafast molec-
ular processes. Intramolecular vibrational energy
transfer frequently takes place on a slower time scale
(10~13-10-'2 s or more). However, FRs can some-
times bring about fast transfers which can be de-
tected by the present method. Although the infor-
mation contained in the correlation function is strictly
identical with that contained in the original optical
spectrum, there is definite advantage in carrying out
the Fourier transformation. The correlation function
is more sensitive and can detect resonances which
would remain unnoticed in the optical spectrum
(compare fig. 5 of the present paper with fig. 3 of ref.
[24]). Moreover, the parameters of the FR can be
determined with a greater accuracy. Finally, the in-
formation is displayed in a much more suggestive way
as a true intramolecular kinetic process.
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