Models for decision making: From applications to mathematics... and back

Yves Crama

HEC Management School
University of Liège

Francqui Lecture, KUL, March 2010
Outline

1. Mathematics and the real-world
2. Operations research and models
3. A glimpse at the lectures
Outline

1. Mathematics and the real-world
2. Operations research and models
3. A glimpse at the lectures
Outline

1. Mathematics and the real-world
2. Operations research and models
3. A glimpse at the lectures
1 Mathematics and the real-world

2 Operations research and models

3 A glimpse at the lectures
Opinion of (some) economists and managers concerning mathematics:

- An interesting (at best: amusing) intellectual playground.
- Mathematical models are totally disconnected from reality, and hence useless.
Opinion of (some) economists and managers concerning mathematics:

- An interesting (at best: amusing) intellectual playground.
- Mathematical models are totally disconnected from reality, and hence useless.
Opinion of (some) economists and managers concerning mathematics:

- An interesting (at best: amusing) intellectual playground.
- Mathematical models are totally disconnected from reality, and hence useless.
Opinion of (some) economists and managers concerning mathematics:

- An interesting (at best: amusing) intellectual playground.
- Mathematical models are totally disconnected from reality, and hence useless.
Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher)“Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama
Models for decision making: From applications to mathematics...
Opinion of (some) mathematicians concerning applications:

- **Dialog with a former (mathematics) teacher:**
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- **Opinion of a (mathematician) colleague:**
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- **In many mathematics departments: careful distinction between**
 - “pure mathematics” and
 - “applied mathematics”.
Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Commonly heard opinions

Mathematics and the real-world
Operations research and models
A glimpse at the lectures

Yves Crama

Models for decision making: From applications to mathematics...
Commonly heard opinions

Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama

Models for decision making: From applications to mathematics...
Commonly heard opinions

Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama
Commonly heard opinions

Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher)“Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama
Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama
Commonly heard opinions

Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher) “Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.

Yves Crama
Opinion of (some) mathematicians concerning applications:

- Dialog with a former (mathematics) teacher:
 - (Teacher) “What do you do these days?”
 - (YC) “Well, I’m spending more and more time working on real-world applications”
 - (Teacher)“Oh... what a pity!”

- Opinion of a (mathematician) colleague:
 - “Mathematics should not be applied.”
 - “Applications pollute the beauty of pure mathematics.”

- In many mathematics departments: careful distinction between
 - “pure mathematics” and
 - “applied mathematics”.
Historical point of view

And yet, historically: development of mathematics tightly linked with real-world (dirty) applications:

Babylon (around 2000 BC):
And yet, historically: development of mathematics tightly linked with real-world (dirty) applications:

Babylon (around 2000 BC):
Babylon (around 2000 BC):

It was an important task for the rulers of Mesopotamia to dig canals and to maintain them, because canals were not only necessary for irrigation but also useful for the transport of goods and armies. The rulers or high government officials must have ordered Babylonian mathematicians to calculate the number of workers and days necessary for the building of a canal, and to calculate the total expenses of wages of the workers. There are several Old Babylonian mathematical texts in which various quantities concerning the digging of a canal are asked for.
(K. Muroi, Historia Sci. (1992))
Arabic mathematicians, and in particular al-Haytham (965-1039AD) investigated the optical properties of mirrors made from conic sections. Astronomy, time-keeping and geography provided other motivations for geometrical and trigonometrical research. For example Ibrahim ibn Sinan (908-946 AD) and Thabit ibn Qurra (836-901AD) both studied curves required in the construction of sundials. Abu’l-Wafa (940-998AD) and Abu Nasr Mansur (970-1036AD) both applied spherical geometry to astronomy. (www-history.mcs.st-and.ac.uk)
The word “algorithm” derives from the name of Al-Khwarizmi (780-850 AD) who was interested in teaching what is most useful in arithmetic, such as men constantly require in cases of inheritance, legacies, partition, lawsuits, and trade, or where the measuring of lands, the digging of canals, geometrical computations, and other objects of various sorts and kinds are concerned. (www-history.mcs.st-and.ac.uk)
More recently

Famous mathematicians like Newton, Lagrange, Gauss, Von Neumann were concerned with real-world problems as well as with pure mathematics, and constantly fed one type of research with the other one.

(Which is not to say that they did not make any difference between pure and applied mathematics, but rather that they showed no disdain for either activity.)
More recently

- Famous mathematicians like Newton, Lagrange, Gauss, Von Neumann were concerned with real-world problems as well as with pure mathematics, and constantly fed one type of research with the other one.

- (Which is not to say that they did not make any difference between pure and applied mathematics, but rather that they showed no disdain for either activity.)
Mathematical models and methods play a useful role in management and economics:

- game theory and theory of social choice,
- microeconomics,
- econometrics, statistics,
- pricing of financial instruments,
- actuarial theory,
- operations research,
- etc.
Operations research is the discipline of applying advanced analytical methods to help make better decisions.

- By definition: focuses on applications and on action.
- Thousands of applications in all fields of management and in all sectors of activity.
The science of better

Operations research is the discipline of applying advanced analytical methods to help make better decisions.

- By definition: focuses on applications and on action.
- Thousands of applications in all fields of management and in all sectors of activity.
Operations research

The science of better

Operations research is the discipline of applying advanced analytical methods to help make better decisions.

- By definition: focuses on applications and on action.
- Thousands of applications in all fields of management and in all sectors of activity.
Operations research

The science of better

Operations research is the discipline of applying advanced analytical methods to help make better decisions.

- By definition: focuses on applications and on action.
- Thousands of applications in all fields of management and in all sectors of activity.
Finalists of Edelman Award for Achievement in OR

- Hewlett Packard: “Product Portfolio Management with OR”
- IBM: “OR Improves Sales Productivity at IBM.”
- Marriott International: “Group Pricing Optimizer.”
- Zara Uses OR to Reengineer Its Distribution Process
- Federal Aviation Administration: “Airspace Flow Programs”
- StatoilHydro and Gassco: “Optimizing the Offshore Pipeline System for Natural Gas in the North Sea”
- The City of Stockholm: “O.R. Improves Quality and Efficiency in Social Care and Home Help”
Closer to us...
Scheduling the Belgian soccer league (D. Goossens, F. Spieksma)

- Algorithm actually used to schedule the first division (Jupiler league)
- Takes into account the wishes of the clubs, of the police, and of TV broadcasters
- Increases the transparency of the process
NSide (joint spinoff UCL - ULg)

SCOOP: Steel Cost Optimization

- A strategic decision support tool
- Aimed at selecting the best combination of raw materials that match all quality and technical requirements of an integrated steel plant
- Reducing the raw material costs by a fraction of percent translates into huge savings.
- Already adopted by plants in Belgium, France, Germany, Brazil, Czech Republic
Closer to us...

NSide (joint spinoff UCL - ULg)

Electricity markets

- Collaboration with Belpex (Belgian power exchange)
- Challenge: clearing of day-ahead electricity market for coupled (integrated) markets in Netherlands, Belgium and France – balancing cross-border energy exchanges at equilibrium prices.
- Solution adopted by consortium on the basis of an international competition.
Investor profiling

Objectives:

- quantify an individual’s attitude toward risk,
- define and manage optimal investment portfolios that are consistent with the risk profile.
- Based on modeling and optimization of utility function
- Complies with regulations for retail investment products (“knowledge of clients’ profile”).
- Solution adopted by several financial companies.
1. Mathematics and the real-world

2. Operations research and models

3. A glimpse at the lectures
Models in science

Operations research (like much of modern science) relies on

- mathematical models as idealized, or schematic representations of real-world situations,
- mathematical solutions of such models in order to obtain insights into the properties of alternative courses of action.
Operations research (like much of modern science) relies on
- mathematical models as idealized, or schematic representations of real-world situations,
- mathematical solutions of such models in order to obtain insights into the properties of alternative courses of action.
Because models are idealized and schematic, they may appear to some decision-makers as being disconnected from reality, and useless.
Ceci n’est pas une pipe.
Models actually turn out to be very useful.. and we all use them everyday.

Example: route finder

Suppose I want to find the best way to drive from Liège to the center of Leuven.

A first model
Example: route finder

A more detailed model
Example: route finder

A mathematical representation as a graph
Example: route finder

A mathematical representation as a graph
Shortest paths

Question:
Given a graph, with distances on its arcs, how do we find a shortest path from point A to point B?

Answer:
- Classical problem in operations research
- Solved efficiently by Dijkstra’s algorithm (1959)
Question:
Given a graph, with distances on its arcs, how do we find a shortest path from point A to point B?

Answer:
- Classical problem in operations research
- Solved efficiently by Dijkstra’s algorithm (1959)
Shortest paths

A more complete answer:

- New applications require very fast algorithms (on-line computation by the GPS navigation system in your car)
- for huge networks (route from Liège to Madrid)
- and for dynamic networks (traffic conditions, accidents, road construction work,...).

Such questions foster new mathematical and computational developments (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
Shortest paths

A more complete answer:

- New applications require very fast algorithms (on-line computation by the GPS navigation system in your car)
- for huge networks (route from Liège to Madrid)
- and for dynamic networks (traffic conditions, accidents, road construction work,...).

Such questions foster new mathematical and computational developments (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
A more complete answer:

- New applications require very fast algorithms (on-line computation by the GPS navigation system in your car)
- for huge networks (route from Liège to Madrid)
- and for dynamic networks (traffic conditions, accidents, road construction work,...).

Such questions foster new mathematical and computational developments (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
A more complete answer:

- New applications require very fast algorithms (on-line computation by the GPS navigation system in your car)
- for huge networks (route from Liège to Madrid)
- and for dynamic networks (traffic conditions, accidents, road construction work,...).

Such questions foster new mathematical and computational developments (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
Shortest paths

A more complete answer:

- New applications require very **fast algorithms** (on-line computation by the GPS navigation system in your car)
- for **huge networks** (route from Liège to Madrid)
- and for **dynamic networks** (traffic conditions, accidents, road construction work,...).
- Such questions foster **new mathematical and computational developments** (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
A more complete answer:

- New applications require very fast algorithms (on-line computation by the GPS navigation system in your car)
- for huge networks (route from Liège to Madrid)
- and for dynamic networks (traffic conditions, accidents, road construction work,...).
- Such questions foster new mathematical and computational developments (preprocessing of large networks, hierarchical approaches, etc.) which can be in turn incorporated in mobile navigation devices.

Typical example of the interplay between real-world problems, mathematical research and computational developments.
Last 50 years: much research on **combinatorial models**, or **discrete models**, meaning roughly:

- mathematical models involving a finite number of "states", or "configurations", or "solutions" (as opposed – roughly – to "continuous" models, such as those describing the position of a planet around the sun, or the temperature of a compound, or the voltage in an electrical circuit).

Combinatorial models may turn out to be relatively easy to solve (e.g., the shortest path problem) or extremely difficult.
Last 50 years: much research on **combinatorial models**, or **discrete models**, meaning roughly:

- mathematical models involving a finite number of “states”, or “configurations”, or “solutions” (as opposed – roughly – to “continuous” models, such as those describing the position of a planet around the sun, or the temperature of a compound, or the voltage in an electrical circuit).

Combinatorial models may turn out to be relatively easy to solve (e.g., the shortest path problem) or extremely difficult.
Progress in combinatorial optimization

Last 50 years: much research on **combinatorial models**, or **discrete models**, meaning roughly:

- mathematical models involving a finite number of “states”, or “configurations”, or “solutions” (as opposed – roughly – to “continuous” models, such as those describing the position of a planet around the sun, or the temperature of a compound, or the voltage in an electrical circuit).

Combinatorial models may turn out to be relatively easy to solve (e.g., the shortest path problem) or extremely difficult.
Progress in combinatorial optimization

Traveling Salesman Problem

Find the shortest tour to be followed by a truck which is to deliver goods at a number of predefined locations.
Illustration of progress on this problem from 1954 to 2004:
Dantzig, Fulkerson, Johnson: 49 cities (1954)
Applegate, Bixby, Chvátal, Cook: 25,000 cities (2004)
Progress in combinatorial optimization

- Nobody wants to visit 25,000 Swedish cities!
- A more realistic example: production of computer chips.
- Minimize the time required for a laser to interconnect the gates of the chip.
- Largest example solved (optimally) to date: 85,900 gates
Progress in combinatorial optimization

- Nobody wants to visit 25,000 Swedish cities!
- A more realistic example: production of computer chips.
 - Minimize the time required for a laser to interconnect the gates of the chip.
 - Largest example solved (optimally) to date: 85,900 gates
Progress in combinatorial optimization

- Nobody wants to visit 25,000 Swedish cities!
- A more realistic example: production of computer chips.
- Minimize the time required for a laser to interconnect the gates of the chip.
- Largest example solved (optimally) to date: 85,900 gates
Nobody wants to visit 25,000 Swedish cities!
A more realistic example: production of computer chips.
Minimize the time required for a laser to interconnect the gates of the chip.
Largest example solved (optimally) to date: 85,900 gates
Progress in combinatorial optimization

Computing requirements

- About 1.5 years of computing time on 250 parallel processors,
- equivalent to 140 years of computing time on a powerful sequential processor.

Progress made possible by a combination of:

- advances in computer hardware,
- advances in implementations of complex algorithms,
- advances in mathematical understanding of the problem.

Similar progress has been observed in other areas of application (such as production planning).

Yves Crama
Progress in combinatorial optimization

Computing requirements

- About 1.5 years of computing time on 250 parallel processors,
- equivalent to 140 years of computing time on a powerful sequential processor.

Progress made possible by a combination of:

- advances in computer hardware,
- advances in implementations of complex algorithms,
- advances in mathematical understanding of the problem.

Similar progress has been observed in other areas of application (such as production planning).
Progress in combinatorial optimization

Computing requirements
- About 1.5 years of computing time on 250 parallel processors,
- equivalent to 140 years of computing time on a powerful sequential processor.

Progress made possible by a combination of:
- advances in computer hardware,
- advances in implementations of complex algorithms,
- advances in mathematical understanding of the problem.

Similar progress has been observed in other areas of application (such as production planning).
Progress in combinatorial optimization

Computing requirements

- About 1.5 years of computing time on 250 parallel processors,
- equivalent to 140 years of computing time on a powerful sequential processor.

Progress made possible by a combination of:

- advances in computer hardware,
- advances in implementations of complex algorithms,
- advances in mathematical understanding of the problem.

Similar progress has been observed in other areas of application (such as production planning).
Progress in combinatorial optimization

Computing requirements

- About 1.5 years of computing time on 250 parallel processors,
- equivalent to 140 years of computing time on a powerful sequential processor.

Progress made possible by a combination of:

- advances in computer hardware,
- advances in implementations of complex algorithms,
- advances in mathematical understanding of the problem.

Similar progress has been observed in other areas of application (such as production planning).
Progress in combinatorial optimization

For linear programming: over a timespan of 15 years (1987-2002), reduction of computing time

- by a factor of 1,000 (due to advances in computer hardware),
- by a factor of 1,000 (due to advances in mathematical understanding).

Globally: speedup by a factor of 1,000,000. Problems which earlier required 1 year of computing time can nowadays be solved in 30 seconds.
Progress in combinatorial optimization

For linear programming: over a timespan of 15 years (1987-2002), reduction of computing time

- by a factor of 1,000 (due to advances in computer hardware),
- by a factor of 1,000 (due to advances in mathematical understanding).

Globally: speedup by a factor of 1,000,000. Problems which earlier required 1 year of computing time can nowadays be solved in 30 seconds.
Progress in combinatorial optimization

For linear programming: over a timespan of 15 years (1987-2002), reduction of computing time

- by a factor of 1,000 (due to advances in computer hardware),
- by a factor of 1,000 (due to advances in mathematical understanding).

Globally: speedup by a factor of 1,000,000.
Problems which earlier required 1 year of computing time can nowadays be solved in 30 seconds.
Outline

1. Mathematics and the real-world
2. Operations research and models
3. A glimpse at the lectures
Lectures focus mostly on two types of models:

- Boolean models;
- production planning and scheduling models.
Lectures focus mostly on two types of models:

- **Boolean models**;
- production planning and scheduling models.
Boolean functions

Some mathematics...

A function is a rule F of the form:

$$(\text{input } 1, \ldots, \text{input } n) \rightarrow \text{output } = F(\text{input } 1, \ldots, \text{input } n)$$

It associates a value (output) with every possible combination of values given to n variables (inputs).

Examples:
- price \rightarrow demand;
- labor and capital \rightarrow production quantity;
- day of the year \rightarrow height of the tide.
A function is a rule F of the form:

$$(\text{input } 1, \ldots, \text{input } n) \rightarrow \text{output} = F(\text{input } 1, \ldots, \text{input } n)$$

It associates a value (output) with every possible combination of values given to n variables (inputs).

Examples:
- price \rightarrow demand;
- labor and capital \rightarrow production quantity;
- day of the year \rightarrow height of the tide.
For a function to be interesting,

- a variable should take at least two distinct values (otherwise... it is not a variable), and
- the function should take at least two distinct values (otherwise... it is not a function of the variables).

So: the most elementary interesting functions are those where each input variable takes exactly two values and where the function itself can take exactly two values.

Such functions are named Boolean functions, after George Boole (1815-1864).
For a function to be interesting,

- a variable should take at least two distinct values (otherwise... it is not a variable), and
- the function should take at least two distinct values (otherwise... it is not a function of the variables).

So: the most elementary interesting functions are those where each input variable takes exactly two values and where the function itself can take exactly two values. Such functions are named Boolean functions, after George Boole (1815-1864).
For a function to be interesting,
- a variable should take at least two distinct values (otherwise... it is not a variable), and
- the function should take at least two distinct values (otherwise... it is not a function of the variables).

So: the most elementary interesting functions are those where each input variable takes exactly two values and where the function itself can take exactly two values.

Such functions are named Boolean functions, after George Boole (1815-1864).
For a function to be interesting,

- a variable should take \textit{at least two distinct values} (otherwise... it is not a variable), and
- the function should take \textit{at least two distinct values} (otherwise... it is not a function of the variables).

So: the \textbf{most elementary} interesting functions are those where each input variable takes \textit{exactly two values} and where the function itself can take \textit{exactly two values}.

Such functions are named \textbf{Boolean functions}, after George Boole (1815-1864).
For a function to be interesting,

- a variable should take at least two distinct values (otherwise... it is not a variable), and
- the function should take at least two distinct values (otherwise... it is not a function of the variables).

So: the most elementary interesting functions are those where each input variable takes exactly two values and where the function itself can take exactly two values.

Such functions are named Boolean functions, after George Boole (1815-1864).
George Boole was interested in modeling human reasoning (or the *Laws of Thought* – 1854).

In a Boolean function, each variable, as well as the output of the function, can be viewed as representing the value True or False.

In spite of their simplicity, Boolean functions have found an amazing array of applications over the last 150 years.
Applications of Boolean functions

- Artificial intelligence: an action is taken (Yes or No) depending on the presence or absence of certain features (e.g., medical diagnosis: prescribe additional tests or not)
- Electrical and electronic engineering: signal goes through a network (Yes or No) depending on the state of intermediate gates (Open or Closed)
- Computer science: computation output is 0 or 1 depending on the initial input (in binary format: string of 0’s and 1’s)
- Game theory and social choice: a resolution is adopted (Yes or No) by a governing body (e.g., by the Council of Ministers of the European Union) depending on the votes (Yes or No) of individual members.
- Reliability: complex system operates (Yes or No) depending on the state of its elements (operating or failed)
Some advertising...

Two forthcoming books on Boolean functions:

BOOLEAN MODELS AND METHODS in Mathematics, Computer Science and Engineering
Yves CRAMA and Peter L. HAMMER, eds.
Cambridge University Press
Due to appear: June 2010
About 750 pages
BOOLEAN FUNCTIONS
Theory, Algorithms, and Applications

Yves CRAMA and Peter L. HAMMER
Cambridge University Press
Due to appear: December 2010
About 800 pages
Two Boolean models

2. Classification: mining meaningful relations in databases (E. Boros, YC, P.L. Hammer, T. Ibaraki, A. Kogan, ...).
Problem statement

Given a large network of shareholding relations among firms, analyze the structure of control in this network.

Basic idea:

- Each shareholder can express his power by voting in general assemblies.
- His influence propagates in the network following shareholding links.
Analysis of shareholders’ power in corporate networks

Problem statement
Given a large network of shareholding relations among firms, analyze the structure of control in this network.

Basic idea:
- Each shareholder can express his power by voting in general assemblies.
- His influence propagates in the network following shareholding links.
Shareholders’ network 2
Analysis of shareholders’ power in corporate networks

Combining

- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to

- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining

- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to

- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining
- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,
allows us to
- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining

- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to

- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining
- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to
- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining
- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,
allows us to
- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.

Yves Crama
Analysis of shareholders’ power in corporate networks

Combining

- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to

- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Analysis of shareholders’ power in corporate networks

Combining
- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to
- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.

Yves Crama
Combining

- game-theoretic models and measures of power,
- stochastic simulation to mimic the behavior of voters,
- graph-theoretic algorithms to accelerate computations,

allows us to

- define meaningful, rigorously defined concepts of shareholders’ power;
- compute power indices in large-scale networks (much larger and more complex than allowed by other methods);
- automatically detect groups controlled by a given shareholder;
- automatically detect all shareholders holding power over a target firm.
Two Boolean models

2. **Classification**: mining meaningful relations in databases (E. Boros, YC, P.L. Hammer, T. Ibaraki, A. Kogan, ...)

Yves Crama
Classification: mining meaningful relations

Problem statement
Given a collection of observed events together with concomitant circumstances, or attributes, explain/predict the occurrence of further events based on the values of the attributes.

Examples:
- List of past decisions regarding the decision to grant, or not to grant, financial credit to an applicant based on observed features (level of income, past credit record, education level, etc.). Objective: automate/objectify future decisions.
- Classify benign vs. malign cancers based on collections of tests and past observations.
- Predict polymer properties based on physical and chemical properties.
Classification: mining meaningful relations

Problem statement

Given a collection of observed events together with concomitant circumstances, or attributes, explain/predict the occurrence of further events based on the values of the attributes.

Examples:

- List of past decisions regarding the decision to grant, or not to grant, financial credit to an applicant based on observed features (level of income, past credit record, education level, etc.). Objective: automate/objectify future decisions.
- Classify benign vs. malign cancers based on collections of tests and past observations.
- Predict polymer properties based on physical and chemical properties.
Problem statement

Given a collection of observed events together with concomitant circumstances, or attributes, explain/predict the occurrence of further events based on the values of the attributes.

Examples:

- List of past decisions regarding the decision to grant, or not to grant, financial credit to an applicant based on observed features (level of income, past credit record, education level, etc.). Objective: automate/objectify future decisions.
- Classify benign vs. malign cancers based on collections of tests and past observations.
- Predict polymer properties based on physical and chemical properties.
Classification: mining meaningful relations

Problem statement

Given a collection of observed events together with concomitant circumstances, or attributes, explain/predict the occurrence of further events based on the values of the attributes.

Examples:

- List of past decisions regarding the decision to grant, or not to grant, financial credit to an applicant based on observed features (level of income, past credit record, education level, etc.). Objective: automate/objectify future decisions.
- Classify benign vs. malign cancers based on collections of tests and past observations.
- Predict polymer properties based on physical and chemical properties.
Logical Analysis of Data

Boolean analysis framework developed in

Y. Crama, P.L. Hammer and T. Ibaraki,
Cause-Effect Relationships and Partially Defined Boolean Functions,

Basic idea:

- express the relation to be learned as a Boolean function (outcome is Yes or No depending on the values of the attributes) and

- try to “guess” the most appropriate functional representation which fits the observed data.
Logical Analysis of Data

LAD has generated a constant stream of (pure and applied) research over the last 20 years, in connection with related developments in data mining and machine learning.

Main advantages:
- Model obtained is comprehensible, understandable by a human being (logical classification rules are explicitly generated);
- Takes into account the interactions among features, rather than individual effects only.

A typical application of LAD:
Logical Analysis of Data

LAD has generated a constant stream of (pure and applied) research over the last 20 years, in connection with related developments in data mining and machine learning.

Main advantages:

- model obtained is comprehensible, understandable by a human being (logical classification rules are explicitly generated);
- takes into account the interactions among features, rather than individual effects only.

A typical application of LAD:
Logical Analysis of Data

LAD has generated a constant stream of (pure and applied) research over the last 20 years, in connection with related developments in data mining and machine learning.

Main advantages:

- model obtained is comprehensible, understandable by a human being (logical classification rules are explicitly generated);
- takes into account the interactions among features, rather than individual effects only.

A typical application of LAD:

A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
 - Features: 15,154 peptides
 - Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:

- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
A typical application of LAD

- Observations: 162 ovarian cancer (positive) cases, 91 control (negative) cases
- Features: 15,154 peptides
- Data: Mass spectroscopy measurements for all peptides

Based on the analysis:
- only 7-9 peptides are needed to describe the classification;
- accuracy of classification is very high: about 98-99% of correct classifications;
- classification rules raise new research questions for biologists (how and why are certain patterns related to the occurrence of cancers?);
- classification rules allowed to detect two (previously unknown) main classes of cancers, based on peptide values.
Lectures focus mostly on two types of models:

- Boolean models;
- production planning and scheduling models.
Production Planning in Automated Manufacturing

Yves Crama Alwin Oerlemans Frits Spieksma

Springer, Berlin, 1996
Second, revised and enlarged edition.
Production planning and scheduling models.

Interest in specific models arising in connection with “modern” production systems (joint work with Brauner, Grigoriev, Gultekin, Oerlemans, Oosten, Spieksma, Van de Klundert):

- tool management for flexible machines,
- production planning of assembly lines for printed circuit boards,
- scheduling operations of robotic production cells,
- balancing assembly lines,
- Just-in-Time production systems.

In particular, interest in the computational complexity of such problems:

- how much computation is required to obtain their optimal solution?
Production planning and scheduling models.

When viewed from an abstract mathematical point of view, these problems turn out to be related to, and raise questions about:

- properties of special classes of (totally unimodular) matrices
- special classes of traveling salesman problems
- problems of fair apportionment of votes in electoral systems
- optimal use of memory space in computers (paging)
- deep (unsolved) mathematical questions in number theory
- etc.
Conclusion

Such connections underline again the fruitfulness of looking at real-world problems from a mathematical point of view... and conversely.
Conclusion

From applications to mathematics... and back

Thank you for your presence and for your attention.