Human cortical excitability depends on time awake and circadian phase

Julien Q. M. Ly1,2*, Giulia Gaggioni1*, Sarah L. Chellappa1*, Soterios Papachilleos1, Alexandre Brzozowski1, Chloé Borsu1, Mario Rosanova3, Simone Sarasso3, Simon N. Archer4, Derk-Jan Dijk4, Christophe Phillips1, Pierre Maquet1,2, Marcello Massimini3 and Gilles Vandewalle1

1 Cyclotron Research Centre, University of Liège, Liège, Belgium
2 Department of Neurology, CHU de Liège, Liège, Belgium
3 Department of Clinical Sciences, Università degli Studi di Milano, Milan, Italy
4 Surrey Sleep Research Centre, University of Surrey, Guildford,

Objectives: The dynamics of neuronal excitability is considered to be mainly driven by sleep homeostasis directly depending on time spent awake. However, no study has been properly designed to investigate a putative circadian timing system influence on human cortical excitability. Here we assessed this circadian modulation using transcranial magnetic stimulation coupled with electroencephalography (TMS/EEG).

Methods: Twenty-two healthy young men (18-30 years) underwent 8 TMS/EEG sessions during a 28h sustained wakefulness under stringent constant routine conditions. Participants were stratified in two groups according to a polymorphism in PERIOD3 (PER3), known to affect sleep-wake regulation (15 PER34/4; 7 PER35/5). Cortical excitability was inferred from the normalized amplitude of the first component of TMS-evoked EEG potentials over the prefrontal cortex, a brain region highly sensitive to sleep deprivation.

Results: Cortical excitability significantly increased with time spent awake. However, the dynamics of this change was not linear and presented a pronounced local decrease around the so-called evening wake-maintenance zone. Conversely, a marked local amplification was found at the end of biological night when the circadian system maximally promotes sleep. This time-course was best predicted by the interaction of linear (sleep homeostasis) and sine-wave (circadian) functions. Interestingly, analyses by genotypes showed that the overnight difference in cortical excitability between sleep and wake maintenance zones was more pronounced in PER35/5.

Conclusions: These results demonstrate that temporal changes in cortical excitability depend on the interplay between sleep homeostasis and circadian timing system.

Fundings: FNRS, AXA, WBI.

Keywords: TMS/EEG, sleep homeostasis, circadian timing system, sleep deprivation