"Optimization of Stochastic Multi-Period Problems in Transportation"

July 9, 2013

Joint work from
Y. Arda, Y. Crama, Th. Pironet

HEC-ULg, QuantOM
Transportation models: as decisions making
Set of optimal decisions or optimal sequence of decisions
TSP, VRP, PDP...No past, no future

- Mono-period vs Multi-period (not periodic, not year)
- Independent and Subsequent and related
- Deterministic and Stochastic Information
- Data and Forecasts
- Parameters and Distribution laws
- Optimal solutions, Heuristic values and Policies
- Instances and Scenarios or Futures
- Values and Statistical performances
- P solvable, NP-Hard and "Intractable"

Contribution: A framework for experimentation
1. Outlines

- Multi-period problems
- Decision making under uncertainty
- Stochastic Optimization Techniques
- A Methodology
 1. Bounds
 2. A picture for manager
 3. Algorithms
 4. Results validation
- Case study (Vehicle-Load Assignment)
- Conclusions
2. Rolling Horizon

<table>
<thead>
<tr>
<th>[P1]</th>
<th>[P1..Pi]</th>
<th>[Pi+1..RH]</th>
<th>[RH+1..Pn]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Deterministic</td>
<td>Stochastic</td>
<td>Tail</td>
<td></td>
</tr>
</tbody>
</table>

Decision: in P1

Action: on deterministic part \([P1...Pi]\) \(\Rightarrow\) feasible

Case study:
1. rolling horizon = 5 periods = 5 days = 1 week
2. periods deterministic 2 days, forecasts 3 days
3. action in P1

Dynamism of the system

- Decision in P1
- Actions (info out)
- Roll-over 1 period, updates (in)
 1. stochastic becomes deterministic \(Pi + 1 = Pi\)
 2. new stochastic info \(RH + 1 = RH\)
- Decision in P2 = P1
3. Solutions to a stochastic problem?

- Worst case (oversize solution)
- Chance constrained (95%)
- Robust to variation (Tree)
- Flexible: Easy to recover (Grass)
- Min or max Expected cost-profit (E^*)
4. Usual techniques

1. "Stochastic Programming" 2-stage, convex, continuous
2. "Markov Chain" states, actions, stability
3. "Approximated Dynamic Programming" ADP
4. "Sample Average Approximation" SAA (continuous)
5. Scenario tree, but rolling horizon

Integer + Discrete distribution laws + Tail
Curse of dimensionality \Rightarrow Intractable!
10 trips per period $2^{10} = 1024$, 3 periods 2^{30}

Conclusion: "Hard" to find E^*

Methodology:
Simulation and optimization over deterministic scenarios
Solve one, several, some scenarios = "futures"

Literature and algorithms as a brick

Which scenarios?
5.1 Bounds

Oracle: a posteriori, revealed info O^*
Infinite horizon value with deterministic info

Real Bound (Upper or lower) on E^*

VPI: Value of the Perfect Information $|O^*-E^*| \geq 0$

Myopic: Deterministic periods value LO
Bound (Lower or upper) on any policy with forecasts

Deterministic approximation : **Mean**

Mean \implies **EVS**: Expected Value Solution

VSS: Value of the stochastic solution $|E^*-EVS| \geq 0$

Rolling horizon: Finite Oracle $O^*(RH)$

VMPM: Value of the multi-period model $|O^*(RH)-LO| \geq 0$

VAI: Value of the Available Information $|O^*(RH)-E^*| \geq 0$
5.2 A picture for a manager: max

Simulations => "Expected value of" : EO*, EO*(RH), ELO, EEVS, EVSS, EVAI, EVPI, EVMPM
5.3 Approximations of E*

- Solve a "good" single scenario (Mean, Mod)
- **Consensus (Cs)**:
 1. Solve N scenarios
 2. Create a new solution with common decisions
- **Restricted Expectation (RE)**: Solve scenarios i,j and cross-evaluate action i over scenarios j
 1. Scenarios $i,j (\in N) \Rightarrow$ Solutions $i,j \Rightarrow$ Actions i,j
 2. Evaluate value of Action i on Scenario j
 3. Cumulated value of Actions i, j
 4. Select the best action

Questions

- Reduced actions and state techniques?
- Scenarios generation?
- Stochastic solution from deterministic model?
- Deterministic solutions are elitist, no option in it
- CPU Time: $1, N + 1, N^2$
5.3 Approximations of \mathbb{E}^*

Full tree: Deterministic equivalent

⇒ One common action for all futures

Links: *Non-anticipativity constraints*
Action variables are equal in each scenario

In practice: Out of Memory, CPU Time, B & B

Approximation by a **Subtree** $(1 \ast ST \neq ST \ast 1)$

Subtree formulation often harder than a single scenario
5.4 Statistical validation and Robustness

Statistical validation:
E* = Best policy we can found
How to compare Policy 1 with Policy 2, E*1 vs E*2 ?

Outclassment = significant difference between means
"*Paired sample comparison*"
Hypothesis : $\mu_1 \neq \mu_2$, $\mu_1 > \mu_2$?
Solve 30 scenarios by instance over an horizon 20 P
Non Non-Normality check, confidence level, t-student...

Robustness analysis:
Assumption : Distribution law is known in practice
Test : Calibration law \neq Real law (Cs, RE, Mean)
6.1 Vehicle-Load Assignment Problem

Problem Assign trip to truck FTL (PDP with selection)

Decisions : Wait, Move Empty, Load

Objective :
Maximize Profit (Load-Empty Moves-Waiting)

Constraint : loading if at place on time, no preemption

Data : [1,2] and forecasts on available loads [3,4,5]

Stochasticity : Availability [%] of a trip from A to B, start in [3,4,5]

Distribution laws [%] linked to :
1. Traveled distance (1, 2, 3, 4)
2. City size (B, M, S)

Solution : Network flow problem
6.2 A Picture for a scenario

A representation of the time-space (Periods, Cities)
6.3 Results: one example 150 loads 20 P

TABLE: Distribution laws linked to distance

<table>
<thead>
<tr>
<th>Info</th>
<th>Alg</th>
<th>O*</th>
<th>O*2</th>
<th>Opt</th>
<th>Mod</th>
<th>EVS</th>
<th>Cs</th>
<th>RE*</th>
<th>TR_{10}</th>
<th>TR_{30}</th>
<th>O* 5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1-10</td>
<td>120.4</td>
<td>0</td>
<td>22.8</td>
<td>17.3</td>
<td>37.3</td>
<td>31.2</td>
<td>12.4</td>
<td>48.6</td>
<td>58.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-15-25A</td>
<td>153.0</td>
<td>0</td>
<td>12.9</td>
<td>38.8</td>
<td>38.4</td>
<td>51.4</td>
<td>43.1</td>
<td>65.7</td>
<td>70.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-15-25B</td>
<td>153.8</td>
<td>0</td>
<td>13.7</td>
<td>44.7</td>
<td>49.2</td>
<td>45.5</td>
<td>26.7</td>
<td>66.5</td>
<td>75.5</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-15-25C</td>
<td>176.0</td>
<td>0</td>
<td>32.8</td>
<td>43.5</td>
<td>67.1</td>
<td>45.2</td>
<td>36.9</td>
<td>72.8</td>
<td>85.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-20</td>
<td>135.0</td>
<td>0</td>
<td>14.8</td>
<td>41.3</td>
<td>52.5</td>
<td>38.9</td>
<td>46.5</td>
<td>69.8</td>
<td>71.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-20-25A</td>
<td>167.8</td>
<td>0</td>
<td>6.8</td>
<td>32.5</td>
<td>62.4</td>
<td>21.3</td>
<td>44.9</td>
<td>73.1</td>
<td>78.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-20-25B</td>
<td>149.6</td>
<td>0</td>
<td>23.3</td>
<td>41.0</td>
<td>46.2</td>
<td>42.0</td>
<td>31.8</td>
<td>70.6</td>
<td>60.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-20-25C</td>
<td>199.8</td>
<td>0</td>
<td>-22.1</td>
<td>30.1</td>
<td>24.1</td>
<td>27.0</td>
<td>-24.7</td>
<td>61.5</td>
<td>67.9</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>1-25</td>
<td>164.9</td>
<td>0</td>
<td>-83.6</td>
<td>6.5</td>
<td>7.9</td>
<td>12.6</td>
<td>-32.1</td>
<td>54.9</td>
<td>50.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-10</td>
<td>163.7</td>
<td>0</td>
<td>18.4</td>
<td>38.9</td>
<td>44.7</td>
<td>37.7</td>
<td>26.8</td>
<td>67.4</td>
<td>74.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-15-25A</td>
<td>221.3</td>
<td>0</td>
<td>69.2</td>
<td>70.2</td>
<td>65.8</td>
<td>70.9</td>
<td>63.7</td>
<td>77.2</td>
<td>76.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-15-25B</td>
<td>186.1</td>
<td>0</td>
<td>65.1</td>
<td>66.3</td>
<td>70.3</td>
<td>51.0</td>
<td>62.4</td>
<td>83.2</td>
<td>87.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-15-25C</td>
<td>136.6</td>
<td>0</td>
<td>36.7</td>
<td>60.4</td>
<td>67.5</td>
<td>73.1</td>
<td>42.5</td>
<td>78.3</td>
<td>82.4</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-20</td>
<td>204.6</td>
<td>0</td>
<td>59.6</td>
<td>74.5</td>
<td>57.7</td>
<td>53.0</td>
<td>39.3</td>
<td>71.6</td>
<td>70.1</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-20-25A</td>
<td>190.1</td>
<td>0</td>
<td>51.6</td>
<td>71.1</td>
<td>81.1</td>
<td>69.4</td>
<td>60.2</td>
<td>82.7</td>
<td>83.3</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-20-25B</td>
<td>150.9</td>
<td>0</td>
<td>30.4</td>
<td>40.0</td>
<td>54.5</td>
<td>57.4</td>
<td>53.2</td>
<td>77.5</td>
<td>74.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-20-25C</td>
<td>180.9</td>
<td>0</td>
<td>65.2</td>
<td>86.5</td>
<td>87.1</td>
<td>79.6</td>
<td>62.0</td>
<td>86.3</td>
<td>89.2</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>2-25</td>
<td>167.3</td>
<td>0</td>
<td>11.4</td>
<td>50.0</td>
<td>65.0</td>
<td>64.2</td>
<td>42.6</td>
<td>69.8</td>
<td>61.0</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>...</td>
<td>100</td>
</tr>
<tr>
<td>Aver.</td>
<td>168.4</td>
<td>0</td>
<td>15.2</td>
<td>35.6</td>
<td>46.2</td>
<td>43.2</td>
<td>25.8</td>
<td>65.6</td>
<td>69.3</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>
6.4 Preliminary conclusions

1. Dynamism is important : VMPM
2. VPI is high (68.4% + 30.7%)
3. No influence of graphs, distribution laws...
4. Subtree algorithm is usually the best
5. Subtree 30 often better than Subtree 10
6. Subtree never under-performs
7. EVS is the second best after subtree
8. the VSS is important 23.1%

Subsequent tests for the subtree:
Algorithmic parameter : calibration scenarios 10-30-50...
⇒ Subtree 50 (mean increases, variance reduces)
No statistical outclassment 50 vs 30, once 50 vs 10
CPU time increases "linearly", LP solution \(\cong \) IP
6.5 Robustness

TABLE: Robustness of distribution law parameter

<table>
<thead>
<tr>
<th>Info</th>
<th>LB</th>
<th>EVS</th>
<th>TR^{30}_{30}</th>
<th>TR^{50}_{30}</th>
<th>TR^{70}_{30}</th>
<th>UB</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inst./Alg.</td>
<td>O^*</td>
<td>O^*2</td>
<td>EG^{50}</td>
<td>TR^{30}_{30}</td>
<td>TR^{50}_{30}</td>
<td>TR^{70}_{30}</td>
</tr>
<tr>
<td>d-20-15-25 A</td>
<td>361.4</td>
<td>0</td>
<td>25.2</td>
<td>40.2</td>
<td>65.0</td>
<td>27.3</td>
</tr>
<tr>
<td>w-20-15-25 A</td>
<td>283.7</td>
<td>0</td>
<td>34.5</td>
<td>82.9</td>
<td>72.5</td>
<td>15.1</td>
</tr>
<tr>
<td>d-20-20-25 A</td>
<td>229.0</td>
<td>0</td>
<td>31.9</td>
<td>63.6</td>
<td>45.3</td>
<td>35.6</td>
</tr>
<tr>
<td>w-20-20-25 A</td>
<td>298.4</td>
<td>0</td>
<td>3.7</td>
<td>33.0</td>
<td>9.7</td>
<td>2.6</td>
</tr>
<tr>
<td>Average 20</td>
<td>293.1</td>
<td>0</td>
<td>23.8</td>
<td>55.0</td>
<td>48.1</td>
<td>20.1</td>
</tr>
<tr>
<td>d-80-15-25 A</td>
<td>152.6</td>
<td>0</td>
<td>91.0</td>
<td>86.0</td>
<td>111.2</td>
<td>111.2</td>
</tr>
<tr>
<td>w-80-15-25 A</td>
<td>217.0</td>
<td>0</td>
<td>44.4</td>
<td>55.7</td>
<td>87.1</td>
<td>86.0</td>
</tr>
<tr>
<td>d-80-20-25 A</td>
<td>129.7</td>
<td>0</td>
<td>85.3</td>
<td>71.0</td>
<td>96.1</td>
<td>103.4</td>
</tr>
<tr>
<td>w-80-20-25 A</td>
<td>184.4</td>
<td>0</td>
<td>20.8</td>
<td>55.2</td>
<td>45.4</td>
<td>49.8</td>
</tr>
<tr>
<td>Average 80</td>
<td>170.9</td>
<td>0</td>
<td>60.4</td>
<td>67.0</td>
<td>84.9</td>
<td>87.6</td>
</tr>
<tr>
<td>Inst./Alg.</td>
<td>O^*</td>
<td>O^*2</td>
<td>EG^{50}</td>
<td>TR^{30}_{30}</td>
<td>TR^{50}_{30}</td>
<td>TR^{70}_{30}</td>
</tr>
<tr>
<td>d-50-15-25 A</td>
<td>201.6</td>
<td>0</td>
<td>49.1</td>
<td>48.0</td>
<td>79.1</td>
<td>59.2</td>
</tr>
<tr>
<td>w-50-15-25 A</td>
<td>187.3</td>
<td>0</td>
<td>54.3</td>
<td>21.9</td>
<td>53.4</td>
<td>35.8</td>
</tr>
<tr>
<td>d-50-20-25 A</td>
<td>145.1</td>
<td>0</td>
<td>34.8</td>
<td>47.5</td>
<td>66.0</td>
<td>43.3</td>
</tr>
<tr>
<td>w-50-20-25 A</td>
<td>225.7</td>
<td>0</td>
<td>7.3</td>
<td>10.3</td>
<td>21.9</td>
<td>-17.6</td>
</tr>
<tr>
<td>Average 50</td>
<td>189.9</td>
<td>0</td>
<td>36.4</td>
<td>31.9</td>
<td>55.1</td>
<td>30.2</td>
</tr>
</tbody>
</table>
6.6 Conclusions Case Study

1. VPI, VMPM, VSS are relevant
2. Independent of graph shape, size or distribution laws
3. Subtree is the best algo and others under-perform
4. Subtree with 30 or 50 scenarios is enough
5. By default, calibrate subtree for 50% availability (2nd best/3 and outclasses if reality is 50%)
6. Robustness: better to stick to distribution and approximate by the center
7. Less uncertainty on information closes the gap and reduces the VPI
7.1 Conclusions-contribution

- Importance of stochastic multi-period models
- Tool to measure the values of informations
- Understandable bounds for managers
- A toolbox of algorithms to tackle those problems
- A statistical validation of algorithms, outclassment
- A subtree solvable by a LP Solver in the case study
7.2 Perspectives

- Metaheuristics (many statistical issues)
- Subtree generation
- Exact: Column generation in subtree if hard
- Improve Cs and RE algorithms
- Improve calibration scenarios generation
- Repositioning strategy, LTL (PDP)
- Investigate the gap between VPI and VAI
- Compare with ADP
- Answer your questions, comments, remarks...