Last 7 days
Bookmark and Share    
Full Text
See detailBayesian Multi-Objective Optimisation of Neotissue Growth in a Perfusion Bioreactor Set-up
olofsson, Simon; Mehrian, Mohammad ULiege; Geris, Liesbet ULiege et al

Scientific conference (2017, October 01)

We consider optimising bone neotissue growth in a 3D scaffold during dynamic perfusion bioreactor culture. The goal is to choose design variables by optimising two conflicting objectives: (i) maximising ... [more ▼]

We consider optimising bone neotissue growth in a 3D scaffold during dynamic perfusion bioreactor culture. The goal is to choose design variables by optimising two conflicting objectives: (i) maximising neotissue growth and (ii) minimising operating cost. Our contribution is a novel extension of Bayesian multi-objective optimisation to the case of one black-box (neotissue growth) and one analytical (operating cost) objective function, that helps determine, within a reasonable amount of time, what design variables best manage the trade-off between neotissue growth and operating cost. Our method is tested against and outperforms the most common approach in literature, genetic algorithms, and shows its important real-world applicability to problems that combine black-box models with easy-to-quantify objectives like cost. [less ▲]

Detailed reference viewed: 50 (4 ULiège)
Full Text
Peer Reviewed
See detailH0LiCOW - II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435-1223
Sluse, Dominique ULiege; Sonnenfeld, A.; Rumbaugh, N. et al

in Monthly Notices of the Royal Astronomical Society (2017), 470

Galaxies located in the environment or along the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H[SUB]0 ... [more ▼]

Galaxies located in the environment or along the line of sight towards gravitational lenses can significantly affect lensing observables, and can lead to systematic errors on the measurement of H[SUB]0[/SUB] from the time-delay technique. We present the results of a systematic spectroscopic identification of the galaxies in the field of view of the lensed quasar HE 0435-1223 using the W. M. Keck, Gemini and ESO-Very Large telescopes. Our new catalogue triples the number of known galaxy redshifts in the direct vicinity of the lens, expanding to 102 the number of measured redshifts for galaxies separated by less than 3 arcmin from the lens. We complement our catalogue with literature data to gather redshifts up to 15 arcmin from the lens, and search for galaxy groups or clusters projected towards HE 0435-1223. We confirm that the lens is a member of a small group that includes at least 12 galaxies, and find 8 other group candidates near the line of sight of the lens. The flexion shift, namely the shift of lensed images produced by high-order perturbation of the lens potential, is calculated for each galaxy/group and used to identify which objects produce the largest perturbation of the lens potential. This analysis demonstrates that (i) at most three of the five brightest galaxies projected within 12 arcsec of the lens need to be explicitly used in the lens models, and (ii) the groups can be treated in the lens model as an external tidal field (shear) contribution. [less ▲]

Detailed reference viewed: 27 (2 ULiège)
See detailMars’ seasonal mesospheric transport seen through nitric oxide nightglow
Milby, Zachariah; Stiepen, Arnaud ULiege; Jain, Sonal et al

Conference (2017, October 01)

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars ... [more ▼]

We analyze the ultraviolet nightglow in the atmosphere of Mars through nitric oxide (NO) δ and γ band emissions as observed by the Imaging UltraViolet Spectrograph (IUVS) instrument onboard the Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft when it is at apoapse and periapse.In the dayside thermosphere of Mars, solar extreme-ultraviolet radiation dissociates CO[SUB]2[/SUB] and N[SUB]2[/SUB] molecules. O([SUP]3[/SUP]P) and N([SUP]4[/SUP]S) atoms are carried from the dayside to the nightside by the day-night hemispheric transport process, where they descend through the nightside mesosphere and can radiatively recombine to form NO(C[SUP]2[/SUP]Π). The excited molecules rapidly relax by emitting photons in the UV δ and γ bands. These emissions are indicators of the N and O atom fluxes from the dayside to Mars’ nightside and the descending circulation pattern from the nightside thermosphere to the mesosphere (e.g. Bertaux et al., 2005 ; Bougher et al., 1990 ; Cox et al., 2008 ; Gagné et al., 2013 ; Gérard et al., 2008 ; Stiepen et al., 2015, 2017).Observations of these emissions are gathered from a large dataset spanning different seasonal conditions.We present discussion on the variability in the brightness and altitude of the emission with season, geographical position (longitude), and local time, along with possible interpretation by local and global changes in the mesosphere dynamics. We show the possible impact of atmospheric waves forcing longitudinal variability and data-to-model comparisons indicating a wave-3 structure in Mars’ nightside mesosphere. Quantitative comparison with calculations of the Laboratoire de Météorologie Dynamique-Mars Global Climate Model (LMD-MGCM) suggests the model reproduces both the global trend of NO nightglow emission and its seasonal variation. However, it also indicates large discrepancies, with the emission up to a factor 50 times fainter in the model, suggesting that the predicted transport is too efficient toward the night winter pole in the thermosphere by ˜20° latitude to the north.These questions are now addressed through an extensive dataset of disk images, in complement to improved simulations of the LMD-MGCM and the Mars Global Ionosphere-Thermosphere Model (MGITM) models. [less ▲]

Detailed reference viewed: 11 (1 ULiège)
See detailFirst Retrieval of Thermospheric Carbon Monoxide From Mars Dayglow Observations
Evans, J. Scott; Stevens, Michael H.; Jain, Sonal et al

Conference (2017, October 01)

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By ... [more ▼]

As a minor species in the Martian thermosphere, Carbon Monoxide (CO) is a tracer that can be used to constrain changing circulation patterns between the lower thermosphere and upper mesosphere of Mars. By linking CO density distributions to dynamical wind patterns, the structure and variability of the atmosphere will be better understood. Direct measurements of CO can therefore provide insight into the magnitude and pattern of winds and provide a metric for studying the response of the atmosphere to solar forcing. In addition, CO measurements can help solve outstanding photochemical modeling problems in explaining the abundance of CO at Mars. CO is directly observable by electron impact excitation and solar resonance fluorescence emissions in the far-ultraviolet (FUV). The retrieval of CO from solar fluorescence was first proposed over 40 years ago, but has been elusive at Mars due to significant spectral blending. However, by simulating the spectral shape of each contributing emission feature, electron impact excitation and solar fluorescence brightnesses can be extracted from the composite spectrum using a multiple linear regression approach. We use CO Fourth Positive Group (4PG) molecular band emission observed on the limb (130 - 200 km) by the Imaging Ultraviolet Spectrograph (IUVS) on NASA’s Mars Atmosphere and Volatile Evolution (MAVEN) spacecraft over both northern and southern hemispheres from October 2014 to December 2016. We present the first direct retrieval of CO densities by FUV remote sensing in the upper atmosphere of Mars. Atmospheric composition is inferred using the terrestrial Atmospheric Ultraviolet Radiance Integrated Code adapted to the Martian atmosphere. We investigate the sensitivity of CO density retrievals to variability in solar irradiance, solar longitude, and local time. We compare our results to predictions from the Mars Global Ionosphere-Thermosphere Model as well as in situ measurements by the Neutral Gas and Ion Mass Spectrometer on MAVEN and quantify any differences. [less ▲]

Detailed reference viewed: 16 (0 ULiège)