Results 1-9 of 9.
(author:Godart, M%C3%A9lanie)OR(U196669)

Bookmark and Share    
Full Text
Peer Reviewed
See detailThe IACOB project. IV. New predictions for high-degree non-radial mode instability domains in massive stars and their connection with macroturbulent broadening
Godart, Mélanie ULiege; Simón-Díaz, S.; Herrero, A. et al

in Astronomy and Astrophysics (2016), 597

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated ... [more ▼]

Context. Asteroseismology is a powerful tool to access the internal structure of stars. Apart from the important impact of theoretical developments, progress in this field has been commonly associated with the analysis of time-resolved observations. Recently, the so-called macroturbulent broadening has been proposed as a complementary and less expensive way - in terms of observational time - to investigate pulsations in massive stars. <BR /> Aims: We assess to what extent this ubiquitous non-rotational broadening component which shapes the line profiles of O stars and B supergiants is a spectroscopic signature of pulsation modes driven by a heat mechanism. <BR /> Methods: We compute stellar main-sequence and post-main-sequence models from 3 to 70 M[SUB]⊙[/SUB] with the ATON stellar evolution code, and determine the instability domains for heat-driven modes for degrees ℓ = 1-20 using the adiabatic and non-adiabatic codes LOSC and MAD. We use the observational material compiled in the framework of the IACOB project to investigate possible correlations between the single snapshot line-broadening properties of a sample of ≈260 O and B-type stars and their location inside or outside the various predicted instability domains. <BR /> Results: We present an homogeneous prediction for the non-radial instability domains of massive stars for degree ℓ up to 20. We provide a global picture of what to expect from an observational point of view in terms of the frequency range of excited modes, and we investigate the behavior of the instabilities with respect to stellar evolution and the degree of the mode. Furthermore, our pulsational stability analysis, once compared to the empirical results, indicates that stellar oscillations originated by a heat mechanism cannot explain alone the occurrence of the large non-rotational line-broadening component commonly detected in the O star and B supergiant domain. Based on observations made with the Nordic Optical Telescope, operated by NOTSA, and the Mercator Telescope, operated by the Flemish Community, both at the Observatorio del Roque de los Muchachos (La Palma, Spain) of the Instituto de Astrofísica de Canarias. [less ▲]

Detailed reference viewed: 16 (2 ULiège)
Full Text
Peer Reviewed
See detailApsidal motion in the massive binary HD 152218
Rauw, Grégor ULiege; Rosu, S.; Noels-Grötsch, Arlette ULiege et al

in Astronomy and Astrophysics (2016), 594(A33), 1-12

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the ... [more ▼]

Massive binary systems are important laboratories in which to probe the properties of massive stars and stellar physics in general. In this context, we analysed optical spectroscopy and photometry of the eccentric short-period early-type binary HD 152218 in the young open cluster NGC 6231. We reconstructed the spectra of the individual stars using a disentangling code. The individual spectra were then compared with synthetic spectra obtained with the CMFGEN model atmosphere code. We furthermore analysed the light curve of the binary and used it to constrain the orbital inclination and to derive absolute masses of (19.8 ± 1.5) and (15.0 ± 1.1) M⊙. Combining radial velocity measurements from over 60 yr, we show that the system displays apsidal motion at a rate of (2.04 ± .24)°/yr. Solving the Clairaut-Radau equation, we used stellar evolution models, obtained with the CLES code, to compute the internal structure constants and to evaluate the theoretically predicted rate of apsidal motion as a function of stellar age and primary mass. In this way, we determine an age of 5.8 ± 0.6 Myr for HD 152218, which is towards the higher end of, but compatible with, the range of ages of the massive star population of NGC 6231 as determined from isochrone fitting. [less ▲]

Detailed reference viewed: 38 (3 ULiège)
See detailTheoretical Instability Domains of Massive Stars
Godart, Mélanie ULiege; Dupret, Marc-Antoine ULiege; Noels-Grötsch, Arlette ULiege et al

in ASP Conference Proceeding, Vol. 462, 27 (2012, September 01)

Massive stars are characterized by a large radiation over gas pressure ratio. With increasing stellar initial mass, they suffer stronger stellar winds, and the induced mass-loss affects the evolution and ... [more ▼]

Massive stars are characterized by a large radiation over gas pressure ratio. With increasing stellar initial mass, they suffer stronger stellar winds, and the induced mass-loss affects the evolution and internal structure on the main sequence and on the post-main sequence. Recent ground-based observations and space missions have shown the presence of pulsations in massive stars, such as acoustic and gravity modes excited by the κ-mechanism and even solar-like oscillations. Strange modes could also be excited in the most massive stars (Aerts et al. 2010). We computed evolutionary tracks and non-adiabatic frequencies for initial masses ranging from 15 to 70 M[SUB]&sun;[/SUB] on the main sequence and on the post-main sequence taking mass loss into account and we discuss in this paper the results for 25 M[SUB]&sun;[/SUB] models. [less ▲]

Detailed reference viewed: 20 (2 ULiège)
Full Text
Peer Reviewed
See detailVariability in the CoRoT photometry of three hot O-type stars. HD 46223, HD 46150, and HD 46966
Blomme, R.; Mahy, Laurent ULiege; Catala, C. et al

in Astronomy and Astrophysics (2011), 533

Context. The detection of pulsational frequencies in stellar photometry is required as input for asteroseismological modelling. The second short run (SRa02) of the CoRoT mission has provided photometric ... [more ▼]

Context. The detection of pulsational frequencies in stellar photometry is required as input for asteroseismological modelling. The second short run (SRa02) of the CoRoT mission has provided photometric data of unprecedented quality and time-coverage for a number of O-type stars. <BR /> Aims: We analyse the CoRoT data corresponding to three hot O-type stars, describing the properties of their light curves and search for pulsational frequencies, which we then compare to theoretical model predictions. <BR /> Methods: We determine the amplitude spectrum of the data, using the Lomb-Scargle and a multifrequency HMM-like technique. Frequencies are extracted by prewhitening, and their significance is evaluated under the assumption that the light curve is dominated by red noise. We search for harmonics, linear combinations, and regular spacings among these frequencies. We use simulations with the same time sampling as the data as a powerful tool to judge the significance of our results. From the theoretical point of view, we use the MAD non-adiabatic pulsation code to determine the expected frequencies of excited modes. <BR /> Results: A substantial number of frequencies is listed, but none can be convincingly identified as being connected to pulsations. The amplitude spectrum is dominated by red noise. Theoretical modelling shows that all three O-type stars can have excited modes, but the relation between the theoretical frequencies and the observed spectrum is not obvious. <BR /> Conclusions: The dominant red noise component in the hot O-type stars studied here clearly points to a different origin than the pulsations seen in cooler O stars. The physical cause of this red noise is unclear, but we speculate on the possibility of sub-surface convection, granulation, or stellar wind inhomogeneities being responsible. The CoRoT space mission was developed and is operated by the French space agency CNES, with participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany and Spain.Tables 2-4 are available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via <A href="http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A4">http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/533/A4</A> [less ▲]

Detailed reference viewed: 28 (2 ULiège)
Full Text
See detailPulsations in massive stars: effect of the atmosphere on the strange mode pulsations
Godart, Mélanie ULiege; Dupret, Marc-Antoine ULiege; Noels-Grötsch, Arlette ULiege et al

in Proceedings of the International Astronomical Union (2011), 272

Recent space observations with CoRoT and ground-based spectroscopy have shown the presence of different types of pulsations in OB stars. These oscillations could be due to acoustic and gravity modes ... [more ▼]

Recent space observations with CoRoT and ground-based spectroscopy have shown the presence of different types of pulsations in OB stars. These oscillations could be due to acoustic and gravity modes, solar-like oscillations or even other pulsations of large growth rates. We present a first attempt at interpreting the latter as strange modes. [less ▲]

Detailed reference viewed: 21 (4 ULiège)
Full Text
See detailSeismic modelling of OB stars
Dupret, Marc-Antoine ULiege; Godart, Mélanie ULiege; Belkacem, Kevin ULiege et al

in Proceedings of the International Astronomical Union (2011), 272

A review of the ability of asteroseismology to probe the internal physics of OB stars is presented. The main constraints that can be obtained from the frequency spectrum in p- and g-modes pulsators are ... [more ▼]

A review of the ability of asteroseismology to probe the internal physics of OB stars is presented. The main constraints that can be obtained from the frequency spectrum in p- and g-modes pulsators are discussed. Next, we consider energetic aspects of the pulsations in OB stars and show how such study also allows to constrain their internal physics. The cases of p-mixed modes (β Cep stars), g-modes (SPB stars), strange modes and stochastically excited modes are considered. [less ▲]

Detailed reference viewed: 10 (1 ULiège)
Full Text
Peer Reviewed
See detailThe multiplicity of O-type stars in NGC 2244
Mahy, Laurent ULiege; Rauw, Grégor ULiege; Martins, F. et al

in Bulletin de la Societe Royale des Sciences de Liege (2011), 80

The investigation of the multiplicity of massive stars is crucial to determine a robust binary fraction but also for understanding the physical properties of these objects. In this contribution, we will ... [more ▼]

The investigation of the multiplicity of massive stars is crucial to determine a robust binary fraction but also for understanding the physical properties of these objects. In this contribution, we will present the main results from our long-term spectroscopic survey devoted to the young open cluster NGC 2244. We discuss the spectral classification, the projected rotational velocity (v sin{i}) and the multiplicity of O-stars. The stellar and wind parameters of each star, obtained using the CMFGEN atmosphere code, help us to better constrain the individual properties of these objects. Several of these stars were observed by the CoRoT satellite (SRa02) in the Asteroseismology channel. This intensive monitoring and the unprecedented quality of the light curves allow us to shed a new light on these objects. [less ▲]

Detailed reference viewed: 29 (2 ULiège)
Full Text
Peer Reviewed
See detailPeriodic mass-loss episodes due to an oscillation mode with variable amplitude in the hot supergiant HD 50064
Aerts, C.; Lefever, K.; Baglin, A. et al

in Astronomy and Astrophysics (2010), 513

<BR /> Aims: We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD 50064 (V = 8.21). <BR /> Methods: CoRoT space photometry and follow-up high ... [more ▼]

<BR /> Aims: We aim to interpret the photometric and spectroscopic variability of the luminous blue variable supergiant HD 50064 (V = 8.21). <BR /> Methods: CoRoT space photometry and follow-up high-resolution spectroscopy with a time base of 137 d and 169 d, respectively, was gathered, analysed, and interpreted using standard time series analysis and light curve modelling methods, as well as spectral line diagnostics. <BR /> Results: The space photometry reveals one period of 37 d, which undergoes a sudden amplitude change with a factor 1.6. The pulsation period is confirmed in the spectroscopy, which additionally reveals metal line radial velocity values differing by 30 km s[SUP]-1[/SUP] depending on the spectral line and on the epoch. We estimate T[SUB]eff[/SUB] 13 500 K, log g 1.5 from the equivalent width of Si lines. The Balmer lines reveal that the star undergoes episodes of changing mass loss on a time scale similar to the changes in the photometric and spectroscopic variability, with an average value of log dot{M} â -5 (in M_ȯ yr[SUP]-1[/SUP]). We tentatively interpret the 37 d period as the result of a strange mode oscillation. Based on high-resolution spectroscopy assembled with the CORALIE spectrograph attached to the 1.2 m Euler telescope at La Silla, Chile and on CoRoT space-based photometry. The CoRoT space mission was developed and is operated by the French space agency CNES, with the participation of ESA's RSSD and Science Programmes, Austria, Belgium, Brazil, Germany, and Spain.Postdoctoral Fellow of the Fund for Scientific Research of Flanders (FWO), Belgium. [less ▲]

Detailed reference viewed: 13 (3 ULiège)
Full Text
Peer Reviewed
See detailPolytropes as simple models of beta Cephei stars
Godart, Mélanie ULiege; Scuflaire, Richard ULiege; Thoul, Anne ULiege et al

in Communications in Asteroseismology (2006), 147

Beta Cephei stars have a simple structure: a convective core surrounded by a radiative envelope. It is therefore worth trying to describe beta Cephei stars with composite polytropes which are useful to ... [more ▼]

Beta Cephei stars have a simple structure: a convective core surrounded by a radiative envelope. It is therefore worth trying to describe beta Cephei stars with composite polytropes which are useful to retrieve structure parameters from frequency spectra. We show that the structure of beta Cephei models can relatively well be described with two-zone polytropic models. However this description is not convincing to depict oscillations of beta Cephei models. [less ▲]

Detailed reference viewed: 16 (7 ULiège)