Diva workshop 2014 New developments

Alexander Barth, Aida Alvera-Azcárate, Mohamed Ouberdous, Charles Troupin, Sylvain Watelet & Jean-Marie Beckers

> Acknowledgements: SeaDataNet, EMODnet Chemistry, EMODnet Biology, STARESO

■ Modernisation of the code structure.

OK

- Modernisation of the code structure.
- Support for observations in NetCDF format

OK

In progress

■ Modernisation of the code structure.

OK

■ Support for observations in NetCDF format

In progress

■ Multivariate approach

OK

Modernisation of the code structure.	OK
Support for observations in NetCDF format	In progress
Multivariate approach	OK
■ Non-Gaussian distributed variables	OK

■ Modernisation of the code structure.

OK

Support for observations in NetCDF format

OK

Multivariate approach

OK

Non-Gaussian distributed variables

OK: divand

■ 4-dimensional generalisation

K: alvana

In progress

Modernisation of the code structure.

OK

Support for observations in NetCDF format

OK

Multivariate approach

OK

■ Non-Gaussian distributed variables

.

■ 4-dimensional generalisation

OK: divand

In progress

Spatially correlated observations errors

In progress

New features: from user feedback during Diva workshop 2012 (*Roumaillac*)

Advection constraint with linear decay rate and local sources

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
 - divacpme: quick & better than original poor man's error
 - divaexerr: almost exact error calculation, much faster than the exact calculation

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code (simplifications, error messages, cleaning up of code, further optimisations, elimination of depreciated tools)

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide (augmented with examples and new tool descriptions)

New features: from user feedback during

Diva workshop 2012 (Roumaillac)

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide
- Possibilities to call Diva from other software via system calls

- Advection constraint with linear decay rate and local sources
- divadetrend: change in the detrending order
- Two new error calculations
- Simplified procedure for installation/compilation + tests
- Housekeeping of the code
- Updated user guide
- Possibilities to call Diva from other software via system calls
- divadoxml adapted to new specifications from IFREMER

- Two additional solvers
 - parallel version
 - iterative version

- Two additional solvers
 - parallel version
 - iterative version
- Optimisations for large data sets

- Two additional solvers
 - parallel version
 - iterative version
- Optimisations for large data sets
- Optimisations of file exchanges for use with ODV

- Two additional solvers
 - parallel version
 - iterative version
- Optimisations for large data sets
- Optimisations of file exchanges for use with ODV
- Highly optimised new version of the grid generator

Better, faster, stronger ...

very fine meshes in a few seconds

Better, faster, stronger ...

Better, faster, stronger ...

Solvers:

- Direct
- Parallel
- Iterative

Better, faster, stronger . . .

Mesh: $\approx 100 \times \text{faster}$ Analysis: $\approx 5-10 \times \text{faster}$

→ also quicker in ODV

4-dimensional generalisation: divand

- Derivation of the kernel for n dimensions
- Additional constraint
- Algorithms (primal and dual formulations)

Released code version available at:

http://modb.oce.ulg.ac.be/mediawiki/
index.php/Divand

Spatially correlated observations

Ideally: observation errors not correlated

Reality: clusters of observations (cruises, ...)

Consequence: observations error covariance matrix

is not diagonal

New error computation

Poor man's error: quick, but error underestimation

Real covariance: correct error estimation but very slow

Now: two quicker/more accurate methods

Adaptation to altimetry data

- Particular temporal/spatial coverage
- Input files: NetCDF
- Modified data weights according to time of measurement

Python plotting tools

- python
- Free alternative to matlab/octave
- Easily deals with NetCDF
- Publication quality figures with Matplotlib

http://modb.oce.ulg.ac.be/mediawiki/index.php/Diva_python

Publications

Detrending:

Recognizing temporal trends in spatial interpolation : an application to the Black Sea Cold Intermediate Layer and mixed layer depth

A. Capet, C. Troupin, J. Carstensen, M. Grégoire & J.-M. Beckers

Ocean Dynamics

Under revision

Publications

Diva-nd:

divand-1.0: n-dimensional variational data analysis for ocean observations

A. Barth, J.-M. Beckers, C. Troupin, A. Alvera-Azcárate & L. Vandenbulcke Geoscientific Model Development Under revision

Publications

Error field:

Approximate and efficient methods to assess error fields in spatial gridding with Diva (Data Interpolating Variational Analysis)

J.-M. Beckers, A. Barth, C. Troupin & A. Alvera-Azcárate *Journal of Atmospheric and Oceanic Technology*Under revision

DivaonedepthODV4

Introduction

Purpose: Handling of files with no vertical axis

DivaonedepthODV4

Introduction

Purpose: Handling of files with no vertical axis

■ For instance, a BODC file :

```
//Data documentation at http://www.bodc.ac.uk/data/documents/series/7011/
//SDN parameter mapping
//<subject>SDN:LOCAL:Chronological Julian Date</subject><object>
SDN:P011::CJDY1101</object><units>SDN:P061::UTAA</units>
//<subject>SDN:LOCAL:CurrDir</subject><object>SDN:P011::
LCDAEL01</object><units>SDN:P061::UABB</units>
//<subject>SDN:LOCAL:CurrSpd</subject><object>SDN:P011::
LCSAEL01</object><units>SDN:P061::UVBB</units>
Cruise Station Type yyyy-mm-ddThh:mm:ss.sss Longitude [degrees_east] Latitude [degrees_north]
LOCAL CDI ID EDMO code Bot.Depth [m] Chronological Julian Date [days] QV:SEADATANET CurrDir [deq T]
OV:SEADATANET CurrSpd [cm/s] OV:SEADATANET
PBISOP/SB1 B1/328/MB * 1971-08-30T10:31:00.000 -5.6166 54.9833 7011 43 148 2441194.438194 1 280.60
1 4 90 1
        2441194.445139 1 266.90 1 5.50 1
        2441194.452083 1 193.00 1 6.70 1
        2441194.459027 1 185.40 1 9.50 1
        2441194.465972 1 176.60 1 13.50 1
        2441194.472916 1 174.00 1 15.30 1
        2441194 479861 1 170 50 1 18 10 1
```


DivaonedepthODV4

Step 1 - Recognition

The script performs several preliminary tests:

- **1** pressure axis $? \Rightarrow \text{exit}$
- 2 depth axis $? \Rightarrow$ exit
- 3 no metadata file $? \Rightarrow \text{exit} + \text{warning}$
- 4 else $? \Rightarrow$ file with no vertical axis

■ CurrDir, CurrSpd and a vertical axis $? \Rightarrow$ special case (see later)

Step 2 - Variables averaging

Scalar variables

■ simple arithmetic average

Vectorial variable

- \blacksquare only for current speed (currdir & currspd) (\rightarrow future upgrade)
- polar coordinate system ⇒ Cartesian coordinate system (u_star & v_star)
- simple arithmetic average

Step 3 - Writing a new data file

A new file...

- The new file has the extension "_bis.txt" instead of ".txt"
- There are only two data line left, containing the mean values of the variables
- Currspd and Currdir become u_star and v_star
- A column "Depth [m]" is added

Step 3 - Writing a new data file

A new file...

- The new file has the extension "_bis.txt" instead of ".txt"
- There are only two data line left, containing the mean values of the variables
- Currspd and Currdir become u_star and v_star
- A column "Depth [m]" is added

... with a new depth axis

- the average of "minimum instrument depth" and "maximum instrument depth" is computed
- 2 the file "contour.depth" is read and the two nearest depths are written in the new file

Step 3 - Writing a new data file

A new file:

```
//Data documentation at http://www.bodc.ac.uk/data/documents/series/7011/
//SDN_parameter_mapping
//subject>SDN:DoCAL:Chronological Julian Date</subject><object>
SDN:P011::CJDY1101</object><units>SDN:P061::UTAA</units>
//subject>SDN:LoCAL:CurrDir</subject><object>SDN:P011::
LCDAELD1</object><units>SDN:P061::UNBB</units>
//<subject>SDN:LoCAL:CurrSpd</subject><object>SDN:P011::
LCSAEL01</object><units>SDN:P061::UVBB</units>
//<subject>SDN:LoCAL:CurrSpd</subject><object>SDN:P011::
LCSAEL01</object><units>SDN:P061::UVBB</units>
//
Cruise Station Type yyyy-mm-ddThh:mm:ss.sss Longitude [degrees_east] Latitude [degrees_north]
LOCAL_CDI_ID EDMO_code Bot.Depth [m] Chronological Julian Date [days] QV:SEADATANET u_star [cm/s]
QV:SEADATANET v_star [cm/s] QV:SEADATANET (Depth [m])
PBISOP/SBI BI/328/MB * 1971-08-30T10:31:00.000 5.6166 54.9833 7011 43 148 2441194.438194 1
-10.023330879292929292 1 3.469439742424242424 1 [150]
2441194.445139 1 -10.02333087929292929292 1 3.469439742424242424 1 [100]
```

The following files are also modified:

varlist u_star and v_star are added to the list datasource the old files are replaced by the new ones ("_bis")

Other features

Tests and warnings

- no depth in the metadata file \Rightarrow exit + warning
- more than one scalar variable ⇒ exit + warning (→ future upgrade)
- time series exceeds the user-defined period \Rightarrow warning

Speed and vertical axis

- Same procedure than "speed without vertical axis"...
- ... except that there is no averaging in this case
- → also included in the divaonedepthODV4 script

How to use it?

- DivaonedepthODV4 is called by divadoall (4D analysis) for every data file
- The script is called only if the extraction flag is set to 1 (driver file)

How to disable it?

2 options:

- 1 set the extraction flag to 0 in the driver file
- 2 set the variable "onedepth" to "no" in divadoall (\sim line 222)

New features: from user feedback during Diva workshop 2013 (*Calvi*)

Website informations

- The website is often upgraded (Diva last version, updated documentation....)
- History of new features and bug fixes is now available at: http://modb.oce.ulg.ac.be/mediawiki/index. php/New_Diva_Features
- Diva (4.6.5) on VirtualBox is now available here: http://modb.oce.ulg.ac.be/mediawiki/index. php/New_Diva_Features

Diva-4.6.4

- Released in February 2014
- New features
 - Introduction of logit transformation
 - Use of a mask file to introduce a relative correlation length field in Diva2D
- Bug fixes
 - Minor bug corrections following the Diva workshop

Figure 1: Salinity analysis from Example4D data

Figure 2: Salinity analysis modified with zeros: test

Figure 3: Test with log transformation

Figure 4: Test with logit transformation

Figure 5: Test with logit transformation + logitrange (0-35)

Figure 6: Test with logit transformation + logitrange (15-35)

Diva-4.6.5

- Released in April 2014
- Bug fixes
 - "end of line" problems under Windows (file "datasource")
 - Portability of scripts using the "sort" command
 - Vertical filtering of correlation length : case of 1 and 2 layer(s)
 - Wrong min and max values in the netcdf output file (error and analyzed field) when using some values of ispec
 - Error field not written in the netcdf output file under some values of ispec
 - Other small fixes

Diva-4.6.6

- Released in September 2014
- New features
 - Check for severe errors in DIVA 3D/4D (script "godiva") + simple errors and warnings
 - Possibility of binning the data before the parameters estimation (script "divabin" + program "binning_lines.f90")
 - Variable correlation length, depending on depth (script "divarlyardepth" + program "rlyardepth.f90")
- Bug fixes
 - Correction of the example in 4D (datasource)
 - Correction of the script divaguessformODV4
 - Exact match needed between variable name in "varlist" and its real name in the data file.

Diva on VirtualBox

- Released in September 2014
- Advantages
 - Diva "ready to run"!
 - Works on every host system
 - Very easy to install
 - PATH is already ok, as well as netcdf libraries,...
- Disadvantages
 - Can be very slow with certain host systems / virtualbox parameters
 - Constraints linked to use of VirtualBox (shared folders, disk space,...)

Installation in 5 easy steps ? ⇒ modb.oce.ulg.ac.be/
mediawiki/upload/DIVA/notes/virtualbox.pdf

Diva-4.6.7

- Released in October 2014
- New features
 - Transformation of user relative length or advection fields files (ascii format) into the gher binary format, via a run of Diva (new script "asctobin")
- Bug fixes
 - Correction of time axis and climatology bounds in Netcdf output files
 - Correction of some attributes in 4D netcdf (databins, snr, cl, varbak)
 - Update of driver files (also in Example4D)

The Diva team supports its users, everywhere in the world...

The Diva team supports its users, everywhere in the world...

... with chocolates.

Beta testers ...

Developed features

■ Correlated observational errors

- Correlated observational errors
- Better file structures (input and driver better separated from command) in 4D loops

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative) depending on the problem type and size

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web
- Improved version of the almost exact error calculation with boundary effects

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web
- Improved version of the almost exact error calculation with boundary effects
- Incorporation of metadata (EDMO-CDI identifier, space-time location) into 4D NetCDF files of climatologies

- Correlated observational errors
- Better file structures
- Automatic selection of solver (parallel, serial, iterative)
- Retrieval of topographies from Diva-on-web
- Improved version of the almost exact error calculation with boundary effects
- Incorporation of metadata
- Update of divadoxml with new template and graphic user interface (see other presentation)

