Diva workshop 2014 Diva in 4 dimensions (GODIVA)

Alexander Barth, Aida Alvera-Azcárate, Mohamed Ouberdous, Charles Troupin, Sylvain Watelet & Jean-Marie Beckers

Acknowledgements: SeaDataNet, EMODnet Chemistry, EMODnet Biology, STARESO

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Installation

See Tutorial on installation (pdf)

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Diva input info files

In input directory:

■ Edit info files and adapt them to your case by providing in the relevant information

File name	content
contour.depth	list file of all depths in meters
NCDFinfo	metadata information for climatology NetCDF files
general_info	information for metadata XML files generation

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation Cleaning of data sets Optimisation of L and λ parameters

Producing a climatology

The analysis
Using advection fields
Using reference fields
Detrending

Data extraction: input files preparation

In Climatology directory:

- datasource file: list of paths to ODV4 spreadsheet(s) from which data sets will be extracted.
- varlist, yearlist and monthlist files.
- qflist (quality flags) file if desired.

varlist	yearlist	monthlist
Temperature Salinity	19002012	0101 0202 0303

Data extraction: driver configuration & divadoall

In Climatology directory:

Edit the driver file and put in a flag number for data extraction.

```
extract flag: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders 1 boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 0 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 0 minimal number of data in a layer. If less, uses data from any month.
```

Figure 1: driver file configuration example.

- Run divadoall or godiva (basic error check-up included)
- Rem: do not forget to adapt the PATH (for ex. in .bashrc)

A subdirectory divadata is created in input directory, and contains the data sets.

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Topography preparation: gebcomodif

For a GEBCO topography file, use the script file gebcomodif to:

- Eliminate header lines
- Change depth values from negative to positive values
- Change comas to dots in decimal numbers
- Change longitude values from [0:360] to [-180:180] range
- Mask rectangle regions by giving coordinates in a takeout.coord file

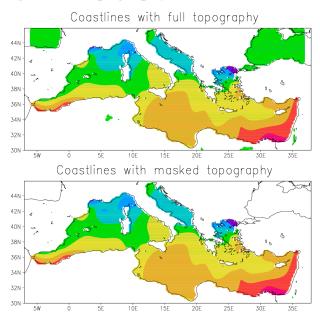
Topography preparation

In input:

■ Provide a topography file named topogebco.asc extracted from GEBCO Global Elevation Data.

In the Climatology directory:

■ Provide a takeout.coord file:


Minlon1 Minlon2 Minlon3	Maxlon1 Maxlon2 Maxlon3	Minlat1 Minlat2 Minlat3	Maxlat1 Maxlat2 Maxlat3

■ Run gebcomodif script file.

A topo.gebco file is generated in input.

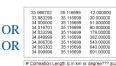
Masking regions in topography

Example of topography preparation

- In input, we provide topogebco.asc covering the Mediterranean Sea area: 30°N to 46°N and 6°W to 37°E.
- In Climatology, we provide a takeout.coord file:

-6. -1. 42. 46. 26.5 40. 40. 46. 5. 9. 33. 35. 20. 30. 30. 30.5 35. 37. 31. 33.

After running the command gebcomodif in Climatology directory, we obtain a topo.gebco in input directory.


■ Or you can extract topography from diva-on-web!

Coastline files generation: input files

In input directory provide:

- (a) a topo. gebco file
 - (b) a topo.dat file
 - (c) topo.grd + TopoInfo.dat files
- the contour.depth file
- a param.par file

topo, gebco

34.049999	35.116699	382.00000	
34.066700	35.116699	543.00000	
34.083302	35.116699	640.00000	
34.099998	35.116699	691.00000	
			, , , , , , , , , , , , , , , , , , , ,
# Correlation Li	angan ic in km o	r gegree???? ac	cording to param iccordchang
# icoordchange	(=0 if position	of data in km ; =	1 if position of data in degree
1			
# ispec (output	files required, o	omments to cor	ne)
11			
# ireg (mode se	lected for back	ground field: 0;	1; 2)
1			
# xori (origin of	output regular :	grid, min yalues	of X)
-9.25			
# yori (origin of	output regular ;	grid, min values	of Y)

nx max x of output grid # ny max y of output grid # yalex (exclusion yalue)

dx (step of output grid)

dy (step of output grid)

snr signal to noise ratio (not yet used as such still set as 4th value of data dat)

varbak variance of the background field

Contour.depth

10 0

Coastlines files generation: driver configuration

In Climatology directory:

Edit the driver file and choose a flag number for boundary lines and coastlines generation:

Table 1: driver options for coastlines generation

Comment line	Flag value and corresponding action	
Boundary lines and coastlines generation:	0: no action is performed 1: generation of contour files of boundaries and coastlines 2: generation of advection UV files of velocities along coasts 3: generation of contour files and advection UV files	

```
Data extraction: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders 0 boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 3 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 0 minimal number of data in a layer. If less, uses data from any month.
```

Figure 2: driver file configuration example.

Coastlines files generation: output

In Climatology directory

■ Run divadoall

A newinput directory is created which contains:

- divaparam: a subdirectory where coastline files coast.cont.100xx are stored
- divaUVcons_all: a subdirectory where velocity field files are stored

Copy divaparam and divaUVcons_all to your input directory.

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Data Cleaning: input files

In input directory:

- divadata: directory which contains data set files of the considered layers.
- divaparam: directory which contains coastline coast.cont.100xx files for all considered layers.
- the contour.depth file.
- a param.par file.

Data Cleaning: input files

In Climatology directory

- Provide varlist, yearlist and monthlist files.
- Edit the driver file,
- Choose a flag number for data cleaning and
- give the considered minimum layer and maximum layer numbers.

Data Cleaning: driver configuration

Table 2: driver options for data cleaning

Comment line	Flag value and corresponding action	
	0:	no action is performed
	1:	cleaning data out of the mesh
cleaning data on mesh	2:	generation of relative length (RL) fields
	3:	cleaning data out of the mesh and generations of RL fields
	4:	cleaning data set files from outliers
	5: generations of RL fields and cleaning data set files from outliers	

```
Data extraction: 1 do it, 0 do nothing, -1 press coord, -10 pressure+Saunders of boundary lines and coastlines generation: 0 nothing, 1: contours, 2: UV, 3: 1+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: both, 4: 1 + outliers elimination, 5: =4+2 cleaning data on mesh: 1, 2: RL, 3: R
```


Figure 3: driver file configuration example.

Data Cleaning: output

In Climatology directory:

Run divadoall.

A newinput directory is created and contains:

- divadata subdirectory which contains cleaned data sets
- divadata subdirectory which contains relative length files if generated

Copy the content of

newinput/divadata and

newinput/divaparam

to input/divadata and input/divaparam

directories.

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction
Topography preparation & Coastlines files generation
Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology
The analysis
Using advection fields
Using reference fields
Detrending

Parameters optimisation: input

In input directory provide:

- divadata directory which contains the data set files of the considered depths.
- divaparam directory which contains coastline coast.cont.100xx files of the considered basin.
- The contour.depth file.
- A (template) param.par file.

Parameters optimisation: input files

In Climatology directory:

- Provide varlist, yearlist and monthlist files
- Edit the driver file and give a flag number for parameters optimisation and bounds for correlation length (L) and signal-to-noise (λ) parameters.

```
0
Parameters estimation and vertical filtering:
-30
Minimal L
0.5
Maximal L
3.
Minimal SN
0.5
Maximal SN
5.0
Analysis and reference field:
0
```

Figure 4: driver file configuration example.

Parameters optimisation: driver configuration

Table 3: driver options for parameters optimisation.

Comment line	Flag value and corresponding action		
	0 :	no action is performed	
	1 :	estimation for each level of correlation length L parameter	
	2 :	estimation for each level of signal to noise ratio (λ) parameter	
	-1:	estimation and vertical filtering of L parameter	
	-2 :	estimation and vertical filtering of λ parameter	
	3 :	estimation for each level of L and λ parameters	
Parameters optimisation	-3:	estimation and vertical filtering of L and λ parameters	
and vertical filtering	10 :	estimation of L parameter for each level using data mean distance	
		as a minimum	
	-10:	estimation of L parameter using data mean distance as a minimum	
		and vertical filtering	
	30 :	estimation of λ and L parameters for each level, using data	
		mean distance as a minimum for L	
	-30:	estimation and vertical filtering of λ and L parameters,	
		using data mean distance as a minimum for L ,	

Parameters optimisation: output

In Climatology directory:

■ Run the divadoall script file.

A newinput directory is created and contains:

divaparam subdirectory with param.par.100xx files and summary files of the optimisation and filtering procedure.

Copy the content of newinput/divaparam to input/divaparam directory

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Producing a Climatology: input

In input directory:

- divadata directory which contains data sets for the considered layers,
- divaparam directory which contains:

```
coastlines coast.cont.100xx files, coastlines param.par.100XX files.
```

- the contour.depth file,
- a param.par file if not provided in divaparam

Producing a Climatology: input & and driver

In Climatology directory:

Provide

```
varlist,
yearlist and
monthlist files.
```

■ Edit the driver file and choose a flag number for analysis.

```
Analysis and reference field:
1
lowerlevel number
5
upperlevel number
25
4D netcdf and Metadata XML metadata files genaration:
1
gnuplot plots: 0 or 1
0
Data detrending: number of groups, 0 if no detrending.
```

Figure 5: driver file configuration example.

Producing a Climatology: input & and driver

In Climatology directory:

Table 4: driver options analyses & climatologies production.

Comment line	Flag value and corresponding action			
	0:	: no action is performed		
	1:	Perform analyses defined by a set of input files: varlist, yearlist,		
		monthlist, constandrefe and the files in input / directory		
Amalania	2:	generation of reference field		
Analysis	3:	perform analyses as in 1 based on vertically filtered background		
and reference fields	11:	perform analyses using a log(data)-exp(analysis) transformations		
	13:	perform analyses using the anamorphosis transformation		
	14:	perform analyses using a user defined transformation		
	21:	perform reference fields using a log(data)-exp(analysis) transformations		
	23:	perform reference fields using the anamorphosis transformation		
	24:	perform reference fields using user defined transformation		
	Adding 100 to flag values 1, 11, 13 and 14 allows to perform			
	the same action using a reference field for each layer generated on the basis of			
	all data from the two neighbouring layers in addition to the layer data set.			
	Adding 100 to flag values 2, 21, 23 and 24 allows to perform			
	reference fields with the same action using all data from the two neighbouring			
	layers in addition to the layer data set			

Producing a Climatology: output

An output/3Danalysis directory is created and contains:

■ The 4D climatology NetCDF file: Temperature.19002010.4Danl.nc

subdirectories:

Fields: contains all Diva analyses 2D-fields Meshes: contains depths meshes for each layer

- 3D NetCDF and binary (GHER format) files: Temperature.19002010.nnmm.100xx.100yy.anl.nc Temperature.19002010.nnmm.100xx.100yy.fieldgher.anl
- +4D netcdf files (Temperature.4Danl.nc) if netcdf flag = 11 or -11!

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Topography preparation & Coastli

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis

Using advection fields

Using reference fields

Detrending

Production of a Climatology using advection fields

In input directory provide:

- divadata directory (data sets)
- divaparam directory (coast.cont.100xx and param.par.100xx files)
- divaUVcons_all directory which contains velocity fields:
 (GHER-format) binary files. (+ see asctobin)
- the contour.depth
- a param.par if not provided in divaparam

In input/divaUVcons_all provide

■ constraint.dat (one line) file.

Production of a Climatology using advection fields

In Climatology directory:

provide a constandrefe file:

Table 5: Example of constandrefe file.

```
# advection flag

1
# reference field flag

0
# variable year code

00000000
# variable month code

0000
```

- Provide varlist, yearlist and monthlist files.
- Edit the driver file and choose a flag number for analysis.
- Execute divadoall.

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Producing a climatology

The analysis
Using advection fields
Using reference fields
Detrending

Data extraction for reference field

In input directory:

■ the contour.depth file

In Climatology directory provide:

- datasource file (ODV4 spreadsheet(s) path)
- varlist, yearlist and monthlist files

varlist	yearlist	monthlist
Temperature	19002010	0103

- qflist file if desired
- Edit the driver file and choose a flag number for data extraction
- Run divadoall script file.

The variable(s) data set files are stored in input/divadata directory

Production reference fields: inputs

In input directory:

- divadata directory (data sets)
- divaparam directory
 (coast.cont.100xx and param.par.100xx files)
- the contour.depth
- a param.par if not provided in divaparam with value equal to zero for ireg (ireg = 0)

In Climatology directory:

- Provide varlist, yearlist and monthlist files.
- Edit the driver and choose flag value 1 for data cleaning.
- and flag value 2, 21, 23 or 24 for analysis.
- Run divadoall script file.

Production reference fields: output

A newinput directory is created and contains:

divarefe subdirectory which contains reference fields (Diva 2D binary files) in GHER-format.

In output/3Danalysis directory:

- Fields: contains all Diva analyses 2D-fields.
- 3D NetCDF files:

```
Temperature.19002010.0103.100xx.100yy.ref.nc
```

■ Binary 3D files (GHER-format):

```
Temperature.19002010.0103.100xx.100yy.fieldgher.ref
```

Copy the content of newinput/divarefe to input/divarefe_all

Producing Climatology using reference fields

In input directory:

- divadata directory (data sets)
- divaparam(coast.cont.100xx and param.par.100xx)
- divarefe_all directory which contains reference fields
- the contour.depth file.

In Climatology directory:

```
# advection flag
0
# reference field flag
1
# variable year code
19002010
# variable month code
0103
```

■ constandrefe file:

Using reference fields

In Climatology directory:

- varlist, yearlist and monthlist files
- Edit driver file and choose a flag number for analysis.
- Run divadoall script file.

Results will be stored in output/3Danalysis directory.

Getting Godiva and installation Diva input info files

Data sets and domain grid preparation

Depths data sets extraction

Topography preparation & Coastlines files generation

Cleaning of data sets

Optimisation of L and λ parameters

Producing a climatology

The analysis
Using advection fields
Using reference fields
Detrending

Detrending

In input directory provide:

- divadata directory where data set files have more than five columns (5th, 6th, ... contain the information in which class the data point belongs)
- same other inputs as for normal run

In Climatology directory provide the usual input text files and:

- Edit the driver file and
- choose a flag number for detrending a value (less or equal to the number of groups) present in your data set

Run divadoall script file.

Results will be stored in

output/3Danalysis directory

To go further...

Result layers are *stacked* together

To go further...

- Result layers are *stacked* together
- Problems may occur between two levels...

To go further...

- Result layers are *stacked* together
- Problems may occur between two levels...
- ... so stabilisation is required

