Publications of Rudi Cloots
Bookmark and Share    
See detailSurface treatments for electrochromic glazing: toward reduced costs and optimal performances through ultrasonic spray pyrolysis
Maho, Anthony ULiege; Denayer, Jessica; Bister, Geoffroy et al

Conference (2015, May)

Detailed reference viewed: 36 (5 ULiège)
Full Text
See detailUn assemblage épitaxique… d’hématite sur rutile.
Warin; Robert, A; Hatert, Frédéric ULiege et al

in Le Règne Minéral (2015), 124

Detailed reference viewed: 22 (1 ULiège)
Full Text
See detailPorous functional materials for energy applications
Colson, Pierre ULiege; Dewalque, Jennifer ULiege; Maho, Anthony ULiege et al

Conference (2015)

Detailed reference viewed: 31 (3 ULiège)
Full Text
See detailComparison of structural features of spin-coated and USP-deposited templated α-Fe2O3films
Toussaint, Caroline ULiege; Chatzikyriakou, Daphne; Cloots, Rudi ULiege et al

Poster (2015)

Detailed reference viewed: 34 (9 ULiège)
Full Text
See detailMagnetic shielding performances of YBa2Cu3O7−δ -coated silver tubes obtained by electrophoretic deposition
Devendra Kumar, N; Closset, Raphaël ULiege; Wera, Laurent ULiege et al

in Superconductor Science and Technology (2015), 28

We report a complete procedure to achieve multilayer YBCO thick films by electrophoretic deposition on silver tubes using a suspension of YBCO powder in butanol. With the aim to optimize the magnetic ... [more ▼]

We report a complete procedure to achieve multilayer YBCO thick films by electrophoretic deposition on silver tubes using a suspension of YBCO powder in butanol. With the aim to optimize the magnetic shielding performances of the coatings, we have carried out an extensive investigation of the influence of the deposition parameters, the multilayer deposition sequence and the intermediate/final heat treatments on the coating microstructure. Using the optimized conditions, a 24-layer YBCO coating has been successfully prepared on an 80 mm long Ag tube: the melt growth processed multilayered YBCO thick film thus obtained can shield an applied magnetic field of 1.9 mT at 77 K, the highest value per thickness unit reported so far in the literature for these materials. [less ▲]

Detailed reference viewed: 114 (30 ULiège)
Full Text
See detailProtein-calcium phosphate nanocomposites: Benchmarking protein loading via physical and chemical modifications against co-precipitation
Ozhukil Kollath, Vinayaraj ULiege; Mullens, Steven; Luyten, Jan et al

in RSC Advances (2015), 5

The low protein loading capacity of commercially available calcium phosphate (CaP) is a major impediment in effectively using this inorganic material as a protein carrier despite its recognized ... [more ▼]

The low protein loading capacity of commercially available calcium phosphate (CaP) is a major impediment in effectively using this inorganic material as a protein carrier despite its recognized biocompatibility. In this study, nanocomposites of CaP and BSA were prepared by carefully designed precipitation methods in aqueous media. In the first co-precipitation method (CaP-BSA-1), calcium and phosphate precursors were simultaneously added to the protein solution matrix and in the second method (CaP-BSA-2) the protein solution was added after the reaction of the precursors. Crystallinity and phase composition of the resulting powders were determined using X-ray diffraction technique. Qualitative confirmation of presence of BSA on the nanocomposites, was obtained using mass spectrometry, ATR-FTIR and XPS. The results from desorption and thermogravimetric measurements indicated that BSA was trapped inside the cavities in the case of CaP-BSA- 1 whereas it was mostly surface adsorbed in the case of CaP-BSA-2. Protein loading capacity of these composites was compared with various physical and chemical surface modification strategies used on commercially available calcium phosphate powders. Nanocomposite particulates were found to have about 275 % higher protein loading capacity as compared to a commercial CaP powder with same surface area. Overall, this study benchmarks the different techniques used for protein loading enhancement on inorganic materials. [less ▲]

Detailed reference viewed: 21 (2 ULiège)
Full Text
See detailCombining mesoporosity and Ti-doping in hematite films for water splitting
Toussaint, Caroline ULiege; Tran, Hoang Son ULiege; Colson, Pierre ULiege et al

in Journal of Physical Chemistry C (2015), 119(4), 1642-1650

(Graph Presented). In this study, we report the synthesis of Ti-doped mesoporous hematite films by soft-templating for application as photoanodes in the photoelectrolysis of water (water splitting ... [more ▼]

(Graph Presented). In this study, we report the synthesis of Ti-doped mesoporous hematite films by soft-templating for application as photoanodes in the photoelectrolysis of water (water splitting). Because the activation of the dopant requires a heat treatment at high temperature (≥800°C), it usually results in the collapse of the mesostructure. We have overcome this obstacle by using a temporary SiO2 scaffold to hinder crystallite growth and thereby maintain the mesoporosity. The beneficial effect of the activated dopant has been confirmed by comparing the photocurrent of doped and undoped films treated at different temperatures. The role of the mesostructure was investigated by comparing dense, collapsed, and mesoporous films heated at different temperatures and characterized under front and back illumination. It turns out that the preservation of the mesotructure enables a better penetration of the electrolyte into the film and therefore reduces the distance that the photogenerated holes have to travel to reach the electrolyte. As a result, we found that mesoporous films with dopant activation at 850°C perform better than comparable dense and collapsed films. [less ▲]

Detailed reference viewed: 121 (38 ULiège)
Full Text
See detailElucidating the opto-electrical properties of solid and hollow titania scattering layers for improvement of dye-sensitized solar cells
Thalluri, Venkata Visveswara Gopala Kris; Henrist, Catherine ULiege; Spronck, Gilles ULiege et al

in Thin Solid Films (2015)

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range ... [more ▼]

The light scattering method has been adapted in dye-sensitized solar cells (DSCs) for optical absorption enhancement. In DSC's, particle-size of TiO2 should be inline with the scattering wavelength range. Scattering particles can be used either by forming a bilayer structure with TiO2 nanocrystalline film or into the bulk of TiO2 nanocrystalline film. For improving the DSCs performances these scattering layers aim to refract/reflect the incident light by extending the traveling distance of UV-Visible/near-IR light within the dye-sensitized TiO2 nanocrystalline film. In this work, the scattering layers with two different particle-sizes (~200 nm-solid and ~400 nm-hollow) were deposited as an additional layer on the top of dye-sensitized TiO2 nanocrystalline film and the morphological properties were studied. By using various opto-electrical characterization techniques, the influence of these scattering layers for two different classes of DSCs prepared from N3 (UV-Vis) and SQ2 (near-IR) dyes were investigated. [less ▲]

Detailed reference viewed: 58 (20 ULiège)
Full Text
See detailAtmospheric Pressure Plasma as an Activation Step for Improving Protein Adsorption on Hydroxyapatite Powder
Ozhukil Kollath, Vinayaraj ULiege; Put, Sofie; Mullens, Steven et al

in Plasma Processes and Polymers (2015)

Detailed reference viewed: 48 (12 ULiège)
Full Text
See detailMicrowave sintering of Ge-doped In2O3 thermoelectric ceramics prepared by slip casting process
Combe, Emmanuel ULiege; Guilmeau, Emmanuel; Savary, E et al

in Journal of the European Ceramic Society (2015), 35

Ge doped In2O3 bulks were prepared by dry uniaxial compaction or slip casting shaping methods followed by a conventional or microwave sintering. Density of slip casted Ge doped In2O3 samples after ... [more ▼]

Ge doped In2O3 bulks were prepared by dry uniaxial compaction or slip casting shaping methods followed by a conventional or microwave sintering. Density of slip casted Ge doped In2O3 samples after conventional sintering reaches bulk density close to the theoretical one thanks to an optimized particles arrangement in the slip casted green bulks. Combined with a fast microwave sintering, slip casted bulks possess submicrometer grain size due to limited grain growth. A significant decrease of the electrical resistivity has been measured in slip casted samples sintered by conventional heat treatment. In bulk specimens sintered by microwave heating, a simultaneous increase of electrical resistivity and decrease of the thermal conductivity is observed. From room temperature to 1000 K in air, slip casted samples sintered by conventional or microwave sintering exhibit similar thermoelectric figure of merit (ZT) values. [less ▲]

Detailed reference viewed: 47 (5 ULiège)
Full Text
See detailEffects of Starch as Carbon precursor on hydrothermal synthesis and Electrochemical performance of Sodium manganese iron phosphate /carbon
Karegeya, Claude ULiege; Vertruyen, Bénédicte ULiege; Cloots, Rudi ULiege et al

Poster (2014, November 05)

Currently Sodium based electrode materials for Li and Na-ion batteries are getting more attention as the most promising potential alternatives of their lithiated counterparts due to their cost effective ... [more ▼]

Currently Sodium based electrode materials for Li and Na-ion batteries are getting more attention as the most promising potential alternatives of their lithiated counterparts due to their cost effective, environmental friendly characteristics and availability of sodium. Nevertheless, it remains a practical challenge to find an electrode material of LIBs and SIBs showing ideal performance. We report here a composite material of Sodium manganese iron phosphate/carbon, successfully synthesized by hydrothermal method. We have characterized our material by using a combination of Powder X-ray diffraction (XRD), scanning electron Microscopy (SEM) and thermal gravimetric analysis (TGA). Sodium manganese iron phosphate (NMFP) particles are electrochemically activated by starch and acetylene black to form NMFP/C cathode material for LIBs. NMFP/C composite in which starch is used as carbon precursor exhibits good discharge capacity due to the presence of pyran rings which increase NMFP/C conductivity. [less ▲]

Detailed reference viewed: 58 (5 ULiège)
See detailInnovative materials improving energy efficiency of buildings
Dewalque, Jennifer ULiege; Denayer, Jessica ULiege; Schrijnemakers, Audrey ULiege et al

Conference (2014, July 01)

Detailed reference viewed: 41 (17 ULiège)
See detailElectrografting of polythiophenes on zinc oxide nanorods for photovoltaic cells
Demarteau, Jérémy ULiege; Ouhib, Farid ULiege; Henrist, Catherine ULiege et al

Poster (2014, May 20)

As the rarefaction of fossil energies, photovoltaic cells are certainly amongst the most important energy sources for the future. Our work concentrated on hybrid photovoltaic cells that are based on ... [more ▼]

As the rarefaction of fossil energies, photovoltaic cells are certainly amongst the most important energy sources for the future. Our work concentrated on hybrid photovoltaic cells that are based on organic (polythiophene) and inorganic components (ZnO nanorods). The technology that maximizes the contact area between the two semi-conductor n and p while maintaining two separate components is the interdigital configuration. As the inorganic part, perfectly well aligned zinc oxide (ZnO) 1D nanostructures have been synthesized by hydrothermal growth on ZnO-seeded FTO substrates. SEM, AFM and XRD characterizations evidence patterned well- aligned nanorods with high c-axis, their roughness of surface and the length of their nanostructure. Concerning the organic component, we synthetize polythiophenes based diblock copolymer with high degree of regioregularity and predetermined molecular weight using Grignard Methatis (GRIM) process. Diblock polythiophene based copolymers are of interest because of the possibility of generating multifunctional materials (by associating the specific properties of each block), including their ability for self-assembly into well-defined nanostructures (fibrils or micelles) with controllable dimensions. Poly(3-hexylthiophene) (P3HT) composes the first block and the second block is either a polythiophene bearing an acrylate group on each monomer unit (PAcET), or a polythiophene bearing both acrylate and poly(ethylene glycol) side chains (P(AcET-co-PEGET)). Typically, the acrylates are used to fixe in a covalent way the copolymer to ZnO nanorods, while the PEG grafts are necessary for the solubilisation of the copolymer in the electrografting medium. 1H NMR and DLS characterizations allow us to find the backbone and the micellar structure of the copolymer. Cathodic polarization (electrografting) of ZnO nanorods induces electropolymerization of acrylate groups, leading to an adherent organized film of poly(thiophene)-based micelles. During the illumination tests, we obtained a typical response of a photovoltaic despite the low yields. This promising synthetic route opens exciting perspectives for the production and the electrochemical functionalization of different lengths of ZnO nanowires, which seems to be promising candidate for hybrids photovoltaic cells. [less ▲]

Detailed reference viewed: 76 (16 ULiège)
Full Text
See detailEffect of the RE (RE = Eu, Er) doping on the structural and textural properties of mesoporous TiO2 thin films obtained by evaporation induced self-assembly method
Borlaf, Mario; Caes, Sébastien ULiege; Dewalque, Jennifer ULiege et al

in Thin Solid Films (2014), 558

Polymeric sol–gel route has been used for the preparation of TiO2 and RE2O3–TiO2 (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The ... [more ▼]

Polymeric sol–gel route has been used for the preparation of TiO2 and RE2O3–TiO2 (RE = Eu, Er) mesoporous thin films by evaporation induced self-assembly method using Si (100) as a substrate. The influence of the relative humidity (RH) on the preparation of the film has been studied being necessary to work under 40% RH in order to obtain homogeneous and transparent thin films. The films were annealed at different temperatures until 900 °C/1 h and the anatase crystallization and its crystal size evolution were followed by low angle X-ray diffraction. Neither the anatase–rutile transition nor the formation of other compounds was observed in the studied temperature range. Ellipsoporosimetry studies demonstrated that the thickness of the thin films did not change after calcination at 500 °C, the porosity was constant until 700 °C, the pore size increased and the specific surface area decreased with temperature. Moreover, the effect of the doping with Er3 + and Eu3 + was studied and a clear inhibition of the crystal growth and the sintering process was detected (by transmission electron and atomic force microscopy) when the doped films are compared with the undoped ones. Finally, Eu3 + and Er3 + f–f transitions were detected by PL measurements. [less ▲]

Detailed reference viewed: 54 (14 ULiège)