Reference : Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Mechanical engineering
Engineering, computing & technology : Materials science & engineering
Engineering, computing & technology : Aerospace & aeronautics engineering
http://hdl.handle.net/2268/99053
Imposing periodic boundary condition on arbitrary meshes by polynomial interpolation
English
Nguyen, Van Dung mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3) >]
Béchet, Eric mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur >]
Geuzaine, Christophe mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Noels, Ludovic mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3) >]
Nov-2011
Proceedings of the 5th International Conference on Advanded COmputational Methods in Engineering (ACOMEN2011)
Hogge, Michel
Van Keer, Roger
Dick, Erik
Malengier, Benny
Slodicka, Marian
Béchet, Eric
Geuzaine, Christophe
Noels, Ludovic mailto
Remacle, Jean-François
9 pages
Yes
No
International
978-2-9601143-1-7
5th International Conference on Advanded COmputational Methods in Engineering (ACOMEN2011)
14-17 november 2011
Université de Liège, Universiteit Gent, Université Catholique de Louvain
Liège
Belgium
[en] In order to predict the effective properties of heterogeneous materials using the finite element
approach, a boundary value problem (BVP) may be defined on a representative volume element
(RVE) with appropriate boundary conditions, among which periodic boundary condition is the most
efficient in terms of convergence rate. The classical method to impose the periodic boundary condition requires identical meshes on opposite RVE boundaries. This condition is not always easy to satisfy for arbitrary meshes. This work develops a new method based on polynomial interpolation that avoids the need of the identical mesh condition on opposite RVE boundaries.
Les recherches ont été financ´ees grâce `a la subvention ”Actions de recherche concertées ARC 09/14-02 BRIDGING - From imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science” de la Direction générale de l’Enseignement non obligatoire de la Recherche scientifique, Direction de la Recherche scientifique, Communauté française de Belgique, et octroyées par l’Académie Universitaire Wallonie-Europe
http://hdl.handle.net/2268/99053
http://www.ltas.ulg.ac.be/acomen2011/NewWebSite/docs/Abstracts/Numerical_Multiscale_Methods/Numerical%20Multiscale%20Methods03.pdf

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
2011_ACOMEN_Periodic.pdfAuthor postprint944.21 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.