Reference : How to Statistically Show the Absence of an Effect
Scientific journals : Article
Social & behavioral sciences, psychology : Neurosciences & behavior
How to Statistically Show the Absence of an Effect
[fr] Comment démontrer statistiquement l'absence d'un effet
Quertemont, Etienne mailto [Université de Liège - ULg > Département de Psychologie : cognition et comportement > Psychologie quantitative >]
Psychologica Belgica
Academia Press
Yes (verified by ORBi)
[en] Absence of an effet ; Statistics ; Power test ; Equivalence test ; Confidence interval
[en] In experimental studies, the lack of statistical significance is often interpreted as the absence of an effect. Unfortunately, such a conclusion is often a serious misinterpretation. Indeed, non-significant results are just as often the consequence of an insufficient statistical power. In order to conclude beyond reasonable doubt that there is no meaningful effect at the population level, it is necessary to use proper statistical techniques. The present article reviews three different approaches that can be used to show the absence of a meaningful effect, namely the statistical power test, the equivalence test, and the confidence interval approach. These three techniques are presented with easy to understand examples and equations are given for the case of the two-sample t-test, the paired-sample t-test, the linear regression coefficient and the correlation coefficient. Despite the popularity of the power test, we recommend using preferably the equivalence test or the confidence interval.
Centre de Neurosciences Cognitives et Comportementales
Researchers ; Professionals ; Students

File(s) associated to this reference

Fulltext file(s):

Open access
Psychologica Belgica - absence of an effect.pdfPublisher postprint681.46 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.