Reference : Hydrogen atom loss from the benzene cation. Why is the kinetic energy release so large?
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Chemistry
http://hdl.handle.net/2268/972
Hydrogen atom loss from the benzene cation. Why is the kinetic energy release so large?
English
[fr] Perte d'un atome d'hydrogène par le cation du benzène. Pourquoi l'énergie cinétique libérée est-elle si importante?
Gridelet, E. [> > > >]
Lorquet, Andrée mailto [Université de Liège - ULg > Département de chimie (sciences) > Laboratoire de dynamique moléculaire >]
Locht, Robert mailto [Université de Liège - ULg > Département de Chimie (Faculté des Sciences) > Laboratoire de Dynamique Moléculaire (Sciences) >]
Lorquet, Jean-Claude mailto [Université de Liège - ULg > Département de Chimie (Faculté des sciences) > Laboratoire de Dynamique Moléculaire (Sciences) > >]
Leyh, Bernard mailto [Université de Liège - ULg > Département de chimie (sciences) > Laboratoire de dynamique moléculaire >]
2006
Journal of Physical Chemistry A
Amer Chemical Soc
110
27
Chava Lifshitz Memorial Issue
8519-8527
Yes (verified by ORBi)
International
1089-5639
Washington
USA
[en] Kinetic energy release distribution ; H-loss from Benzene cation ; Maximum entropy method ; OTST theory ; SACM model ; C6H6+
[en] The kinetic energy release distributions (KERDs) associated with the hydrogen loss from the benzene cation and the deuterium loss from the perdeuteriobenzene cation have been remeasured on the metastable time scale and analyzed by the maximum entropy method. The experimental kinetic energy releases are larger than expected statistically, in contradistinction to what has been observed for the C-X fragmentations of the halogenobenzene cations. H(D) loss from C6H6+ (C6D6+) occurs via a conical intersection connecting the (2)A(2) and (2)A(1) electronic states. Two models are proposed to account for the experimental data: (i) a modified orbiting transition state theory (OTST) approach incorporating electronic nonadiabaticity; (ii) an electronically nonadiabatic version of the statistical adiabatic channel model ( SACM) of Quack and Troe. The latter approach is found to be preferable. It leads to the conclusion that the larger the energy stored in the transitional modes, which partly convert to the relative interfragment motion, the shorter the value of the reaction coordinate at which the adiabatic channels cross, and the larger the probability of undergoing the (2)A(2) -> (2)A(1) transition required for hydrogen loss.
Laboratoire de Dynamique Moléculaire
Fonds de la Recherche Scientifique (Communauté française de Belgique) - FNRS, ARC Contract n° 99-04/245
Researchers
http://hdl.handle.net/2268/972
10.1021/jp056119h
/journals/jpcafh/includes/jinfo-jpcafh.inc
- PDF-version of Editor's Postprint available on request
- Version-pdf du tiré-à-part disponible sur demande

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
JPCA110(2006)8519(pped).pdfPublisher postprint135.18 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.