Reference : Two-level Mixtures of Markov Trees
Scientific congresses and symposiums : Poster
Engineering, computing & technology : Computer science
Two-level Mixtures of Markov Trees
Schnitzler, François mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
The 11th European Conference on Symbolic and Quantitative Approaches to Reasoning with Uncertainty
from 29-05-2011-01-06-2011
Weiru Liu
[en] mixture models ; Markov trees ; EM algorithm ; bagging ; Chow-Liu
[en] We study algorithms for learning Mixtures of Markov Trees for density estimation. There are two approaches to build such mixtures, which both exploit the interesting scaling properties of Markov Trees. We investigate whether the maximum likelihood and the variance reduction approaches can be combined together by building a two level Mixture of Markov Trees. Our experiments on synthetic data sets show that this two-level model outperforms the maximum likelihood one.
Systèmes et Modélisation
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA ; Biomagnet IUAP network of the Belgian Science Policy Office ; Pascal2 network of excellence of the EC

File(s) associated to this reference

Fulltext file(s):

Open access
Schnitzler_ECSQARU.pdfAuthor postprint268.74 kBView/Open

Additional material(s):

File Commentary Size Access
Open access
Schnitzler_ECSQARU_poster.pdf290.95 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.