Reference : Power systems stability control: Reinforcement learning framework
Scientific journals : Article
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/9358
Power systems stability control: Reinforcement learning framework
English
Ernst, Damien mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Glavic, Mevludin [Université de Liège - ULG > Département d'Electricité, d'Electronique, et d'Informatique > Systèmes et Modélisation > >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Feb-2004
IEEE Transactions on Power Systems
Ieee-Inst Electrical Electronics Engineers Inc
19
1
427-435
Yes (verified by ORBi)
International
0885-8950
Piscataway
[en] agent ; optimal control ; power system control ; power system oscillations ; reinforcement learning ; transient stability
[en] In this paper, we explore how a computational approach to learning from interactions, called reinforcement learning (RL), can be applied to control power systems. We describe some challenges in power system control and discuss how some of those challenges could be met by using these RL methods. The difficulties associated with their application to control power systems are described and discussed as well as strategies that can be adopted to overcome them. Two reinforcement learning modes are considered: the online mode in which the interaction occurs with the real power system and the offline mode in which the interaction occurs with a simulation model of the real power system. We present two case studies made on a four-machine power system model. The first one concerns the design by means of RL algorithms used in offline mode of a dynamic brake controller. The second concerns RL methods used in online mode when applied to control a thyristor controlled series capacitor (TCSC) aimed to damp power system oscillations.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
Researchers ; Professionals
http://hdl.handle.net/2268/9358
10.1109/TPWRS.2003.821457
http://www.montefiore.ulg.ac.be/~ernst/

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
IEEEtrans-2003.pdfPublisher postprint203.69 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.