Reference : Subproblem Approach for Thin Shell Dual Finite Element Formulations
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/92138
Subproblem Approach for Thin Shell Dual Finite Element Formulations
English
Dang, Quoc Vuong [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Dular, Patrick mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE)]
V Sabariego, Ruth mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Krähenbühl, Laurent [Ecole Centrale de Lyon > Laboratoire Ampère (CNRS UMR5005) > > >]
Geuzaine, Christophe mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Jul-2011
Proceedings of the 18th Conference on the Computation of Electromagnetic Fields (COMPUMAG2011)
Yes
International
Proceedings of the 18th Conference on the Computation of Electromagnetic Fields (COMPUMAG2011)
July 12-15, 2011
Sydney
Australia
[en] A subproblem technique is applied on dual formu- lations to the solution of thin shell finite element models. Both the magnetic vector potential and magnetic field formulations are considered. The subproblem approach developed herein couples three problems: a simplified model with inductors alone, a thin region problem using approximate interface conditions, and a correction problem to improve the accuracy of the thin shell approximation, in particular near their edges and corners. Each problem is solved on its own independently defined geometry and finite element mesh.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/92138

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
dang_thinshell_cmag11_ok.pdfAuthor preprint1.74 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.