Reference : Non-uniqueness of the natural and projectively equivariant quantization
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/2268/88038
Non-uniqueness of the natural and projectively equivariant quantization
English
Radoux, Fabian mailto [Université de Liège - ULg > Département de mathématique > Géométrie et théorie des algorithmes >]
2008
Journal of Geometry & Physics
Elsevier Science
58
253-258
Yes (verified by ORBi)
International
0393-0440
Amsterdam
The Netherlands
[en] Quantization ; Non-uniqueness
[en] In [C. Duval, V. Ovsienko, Projectively equivariant quantization and symbol calculus: Noncommutative hypergeometric functions, Lett. Math. Phys. 57 (1) (2001) 61–67], the authors showed the existence and the uniqueness of a sl(m+1,R)-equivariant quantization in non-critical situations. The curved generalization of the sl(m+1,R)-equivariant quantization is the natural and projectively equivariant quantization. In [M. Bordemann, Sur l’existence d’une prescription d’ordre naturelle projectivement invariante (submitted for publication). math.DG/0208171] and [Pierre Mathonet, Fabian Radoux, Natural and projectively equivariant quantizations by means of Cartan connections, Lett. Math. Phys. 72 (3) (2005) 183–196], the existence of such a quantization was proved in two different ways. In this paper, we show that this quantization is not unique.
Researchers
http://hdl.handle.net/2268/88038
10.1016/j.geomphys.2007.11.002

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
unic.pdfAuthor preprint155.07 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.