Reference : Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Model...
Scientific journals : Article
Life sciences : Aquatic sciences & oceanology
Life sciences : Environmental sciences & ecology
http://hdl.handle.net/2268/83843
Carbon and nitrogen flows during a bloom of the coccolithophore Emiliania huxleyi: Modelling a mesocosm experiment
English
Joassin, Pascal mailto [Université de Liège - ULg > Département des sciences et gestion de l'environnement > Océanologie >]
Delille, Bruno mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
Soetaert, Karline [Centre for Estuarine and Marine Ecology, Netherlands Institute of Ecology, Yerseke, The Netherlands > > > >]
Harlay, Jérôme mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
Borges, Alberto mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Océanographie chimique >]
Chou, Lei [Laboratoire d’Océanographie Chimique et Géochimie des Eaux, Faculté des Sciences, Université Libre de Bruxelles, B-1050 Brussels, Belgium > > > >]
Riebesell, Ulf [Leibniz Institute of Marine Sciences, IFM-GEOMAR, Kiel, Germany > > > >]
Suykens, Kim [Unité d’Océanographie Chimique, Université de Liège, B-4000 Liège, Belgium > > > >]
Grégoire, Marilaure mailto [Université de Liège - ULg > Département des sciences et gestion de l'environnement > Océanologie >]
2011
Journal of Marine Systems
Elsevier Science
85
71-85
Yes (verified by ORBi)
International
0924-7963
Amsterdam
The Netherlands
[en] A dynamic model has been developed to represent biogeochemical variables and processes observed during experimental blooms of the coccolithophore Emiliania huxleyi induced inmesocosms over a period of 23 days.
The model describes carbon (C), nitrogen (N), and phosphorus (P) cycling through E. huxleyi and the microbial loop, and computes pH and the partial pressure of carbon dioxide (pCO2) from dissolved inorganic carbon (DIC) and total alkalinity (TA). The main innovations are: 1) the representation of E. huxleyi dynamics using an unbalanced growthmodel in carbon and nitrogen, 2) the gathering of formulations describing typical processes involved in the export of carbon such as primary production, calcification, cellular dissolved organic carbon (DOC) excretion, transparent exopolymer (TEP) formation and viral lyses, and 3) an original and validated representation of the calcification process as a function of the net primary production with a
modulation by the intra-cellular N:C ratio mimicking the effect of nutrients limitation on the onset of calcification. It is shown that this new mathematical formulation of calcification provides a better representation of the dynamics of TA, DIC and calcification rates derived from experimental data compared to classicaly used formulations (e.g. function of biomass or of net primary production without anymodulation term).
In a first step, the model has been applied to the simulations of present pCO2 conditions. It adequately reproduces the observations for chemical and biological variables and provides an overall view of carbon and nitrogen dynamics. Carbon and nitrogen budgets are derived from the model for the different phases of the bloom, highlighting three distinct phases, reflecting the evolution of the cellular C:N ratio and the interaction between hosts and viruses. During the first phase, inorganic nutrients are massively consumed by E. huxleyi increasing its biomass. Uptakes of carbon and nitrogen are maintained at a constant ratio. The second phase is triggered by the exhaustion of phosphate (PO4 3−). Uptake of carbon and nitrogen being uncoupled, the cellular
C:N ratio of E. huxleyi increases. This stimulates the active release of DOC, acting as precursors for TEP. The third phase is characterised by an enhancement of the phytoplankton mortality due to viral lysis. A huge amount of DOC has been accumulated in the mesocosm.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/83843

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
joassin_et_al_2011-1.pdfPublisher postprint821.9 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.