Reference : A non-linear homogeneous model for bone-like materials under compressive load.
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Mechanical engineering
Engineering, computing & technology : Multidisciplinary, general & others
http://hdl.handle.net/2268/83434
A non-linear homogeneous model for bone-like materials under compressive load.
English
Mengoni, Marlène mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Milieux continus et thermomécanique >]
Voide, Romain [ETH Zurich > Institute for Biomechanics > > >]
Toye, Dominique [Université de Liège - ULg > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques >]
Léonard, Angélique [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Procédés et développement durable >]
van Lenthe, Gerrit Hendrik [Katholieke Universiteit Leuven - KUL > Department of Mechanical Engineering > Biomechanics and Engineering Design Section - BMGO > >]
Ponthot, Jean-Philippe [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS-Mécanique numérique non linéaire >]
2011
Conference Proceedings - 2nd International Conference on Computational & Mathematical Biomedical Engineering
Nithiarasu, P.
Löhner, R.
van Loon, R.
Sazonov, I.
Xie, X.
355-358
Yes
No
International
978-0-9562914-1-7
Swansea
UK
2nd International Conference on Computational & Mathematical Biomedical Engineering
April 2011
George Mason University
Washington D.C.
USA
[en] trabecular bone ; fabric ; anisotropy
[en] Using morphological data provided by computed tomography, finite element (FE) models can be used to compute the mechanical response of bone and bone-like materials without describing the complex local microarchitecture. A constitutive law is here developed and proposed for this purpose. It captures the non-linear structural behavior of bone-like materials through the use of fabric tensors. It also allows for irreversible strains using a plastic material model, allowing hardening of the yield parameters. These characteristics are expressed in a constitutive law based on the anisotropic continuum damage theory coupled with isotropic elastoplasticity in a finite strains framework. This law is implemented into Metafor, a non-linear FE software. Simulations of cylindrical samples undergoing stepwise compression are presented.
http://hdl.handle.net/2268/83434

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Abstract_CMBE2011.pdfAuthor postprint51.65 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.