Reference : Evaluation of a geometry-based knee joint compared to a planar knee joint
Scientific journals : Article
Human health sciences : Multidisciplinary, general & others
http://hdl.handle.net/2268/83250
Evaluation of a geometry-based knee joint compared to a planar knee joint
English
Sandholm, Anders [Ecole Polytechnique Fédérale de Lausanne - EPFL > > >Virtual Reality Lab > > >]
Schwartz, Cédric mailto [Université de Liège - ULg > Département des sciences de la motricité > Kinésithérapie générale et réadaptation >]
Pronost, Nicolas [Ecole Polytechnique Fédérale de Lausanne - EPFL > > >Virtual Reality Lab. > > >]
de Zee, Mark [>Aalborg University > > >SMI center > > >]
Voigt, Michael [>Aalborg University > > > SMI center > > >]
Thalmann, Daniel [Ecole Polytechnique Fédérale de Lausanne - EPFL > > >Virtual Reality Lab. > > >]
2011
Visual Computer
Springer Science & Business Media B.V.
1-11
Yes (verified by ORBi)
International
0178-2789
[en] Knee joint ; Inverse kinematics and dynamics ; Joint reaction ; Computed muscular control ; Validation ; Musculoskeletal model ; OrthoLoad
[en] Today neuromuscular simulations are used in sev- eral fields, such as diagnostics and planing of surgery, to get a deeper understanding of the musculoskeletal system. Dur- ing the last year, new models and datasets have been pre- sented which can provide us with more in-depth simulations and results. The same kind of development has occurred in the field of studying the human knee joint using complex three dimensional finite element models and simulations. In the field ofmusculoskeletal simulations, no such knee joints can be used. Instead themost common knee joint description is an idealized knee joint with limited accuracy or a planar knee joint which only describes the knee motion in a plane. In this paper, a new knee joint based on both equations and geometry is introduced and compared to a common clinical planar knee joint. The two kinematical models are analyzed using a gait motion, and are evaluated using the muscle ac- tivation and joint reaction forces which are compared to in- vivo measured forces. We show that we are able to predict the lateral, anterior and longitudinal moments, and that we are able to predict better knee and hip joint reaction forces.
http://hdl.handle.net/2268/83250
http://dx.doi.org/10.1007/s00371-010-0538-7
10.1007/s00371-010-0538-7

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Template.pdfAuthor postprint4.4 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.