Reference : Fast and slow spindle involvement in the consolidation of a new motor sequence
Scientific journals : Article
Human health sciences : Radiology, nuclear medicine & imaging
http://hdl.handle.net/2268/81966
Fast and slow spindle involvement in the consolidation of a new motor sequence
English
Barakat, M. [> > > >]
Doyon, J. [> > > >]
Debas, K. [> > > >]
Vandewalle, Gilles mailto [Université de Liège - ULg > > Centre de recherches du cyclotron >]
Poirier, G. [> > > >]
Lafortune, M. [> > > >]
Karni, A. [> > > >]
Ungerleider, L. G. [> > > >]
Benali, H. [> > > >]
Carrier, J. [> > > >]
2011
Behav Brain Res
217
1
117-21
Yes
International
1872-7549
[en] This study aimed to determine the distinct contribution of slow (11-13 Hz) and fast (13-15 Hz) spindles in the consolidation process of a motor sequence learning task (MSL). Young subjects (n = 12) were trained on both a finger MSL task and a control (CTRL) condition, which were administered one week apart in a counterbalanced order. Subjects were asked to practice the MSL or CTRL task in the evening (approximately 9:00 p.m.) and their performance was retested on the same task 12h later (approximately 9:00 a.m.). Polysomnographic (PSG) recordings were performed during the night following training on either task, and an automatic algorithm was used to detect fast and slow spindles and to quantify their characteristics (i.e., density, amplitude, and duration). Statistical analyses revealed higher fast (but not slow) spindle density after training on the MSL than after practice of the CTRL task. The increase in fast spindle density on the MSL task correlated positively with overnight performance gains on the MSL task and with difference in performance gain between the MSL and CTRL tasks. Together, these results suggest that fast sleep spindles help activate the cerebral network involved in overnight MSL consolidation, while slow spindles do not appear to play a role in this mnemonic process.
http://hdl.handle.net/2268/81966
2010/10/27

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Barakat 2011 EBR.pdfPublisher postprint326.1 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.