Reference : Estimation of the turbulent kinetic energy dissipation in a culture cell stirred tank...
Scientific journals : Article
Engineering, computing & technology : Chemical engineering
http://hdl.handle.net/2268/81543
Estimation of the turbulent kinetic energy dissipation in a culture cell stirred tank bioreactor
English
Delafosse, Angélique mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires >]
Collignon, Marie-Laure mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires >]
Dossin, Denis [Université de Liège - ULg > Département de chimie appliquée > > >]
Crine, Michel mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Opérations physiques unitaires >]
Toye, Dominique mailto [Université de Liège - ULg > Département de chimie appliquée > Génie de la réaction et des réacteurs chimiques >]
2011
Chemical Engineering Science
Pergamon Press - An Imprint of Elsevier Science
66
8
1728-1737
Yes (verified by ORBi)
International
0009-2509
Oxford
United Kingdom
[en] Turbulent kinetic energy dissipation rate ; 2D-PIV ; Stirred tank ; Axial impeller ; Isotropy assumptions ; Spatial resolution
[en] The turbulent dissipation rate is a key parameter in stirred tanks and its local values may have a strong
influence on the performance of many processes. However, the local dissipation rate estimation is far
from easy in a stirred tank, especially near the impeller discharge where maximum values are
encountered. The aim of this work is to estimate the dissipation rate in a vessel used for animal-cell
cultures and stirred with a down-pumping axial impeller (Mixel TTP) from velocity fields measured by
2D-PIV. Special attention is paid to the assumptions necessary to estimate the dissipation rate from 2D
measurements and to the influence of measurement spatial resolution on the estimated values. The
analysis of isotropy ratios measured on vertical, horizontal and tangential planes shows that the
turbulence in the impeller discharge is far from isotropic. Isotropy assumptions classically used to
estimate the dissipation rate from 2D measurements may thus lead to erroneous values. Based on the
measured isotropy ratios, a new relationship is proposed to estimate the dissipation rate in the impeller
discharge. This relationship is then used to estimate the dissipation rate on a vertical plane located in
the impeller discharge zone. In order to analyze the influence of the measurement spatial resolution on
the estimated values of the dissipation, a total of 12 spatial resolutions are tested. Results show that if
the spatial resolution is divided by a factor 2, the dissipation rate increases by 220%. For the smallest
spatial resolution value used, the maximum dissipation rate estimated is 50 times higher than the
mean overall dissipation rate and the corresponding minimum value of the Kolmogorov scale is nearly
3 times smaller than the Kolmogorov scale computed from the mean overall dissipation rate.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
Researchers ; Professionals
http://hdl.handle.net/2268/81543
10.1016/j.ces.2011.01.011

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
CES Delafosse version publiée.pdfPublisher postprint1.12 MBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.