Reference : Machine-learning approaches to power-system security assessment
Scientific journals : Article
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/79719
Machine-learning approaches to power-system security assessment
English
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Sep-1997
IEEE Expert
IEEE
12
5
60-72
Yes
International
0885-9000
[en] The paper discusses a framework that uses machine learning and other automatic-learning methods to assess power-system security. The framework exploits simulation models in parallel to screen diverse simulation scenarios of a system, yielding a large database. Using data mining techniques, the framework extracts synthetic information about the simulated system's main features from this database
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/79719
10.1109/64.621229

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
10.1.1.53.6331.pdfAuthor preprint169.87 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.