Reference : Energy savings in methanol synthesis: Use of heat integration techniques and simulation ...
Scientific journals : Article
Engineering, computing & technology : Energy
Engineering, computing & technology : Chemical engineering
http://hdl.handle.net/2268/74779
Energy savings in methanol synthesis: Use of heat integration techniques and simulation tools.
English
Maréchal, François [Université de Liège - ULg > Chimie appliquée > LASSC > >]
Heyen, Georges [Université de Liège - ULg > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques) >]
Kalitventzeff, Boris [Université de Liège - ULg > Services généraux (Faculté des sciences appliquées) > Relations académiques et scientifiques (Sciences appliquées) >]
1997
Computers & Chemical Engineering
Pergamon Press - An Imprint of Elsevier Science
21
Suppl. S
S511-S516
Yes (verified by ORBi)
0098-1354
Oxford
United Kingdom
[en] Starting with a classical process for producing methanol using the reforming and synthesis steps, a combined approach applying simulation models and a new synthesis strategy, named Effect Modelling and Optimisation (EMO), has been used to optimise the energy efficiency of the process. The method allows to identify different ways of improving the energy efficiency of the process. The modifications concern the synthesis reactor and the reforming reactor designs, the exploitation of the purge stream as fuel gas to satisfy the process requirement and its integration to a gas turbine system. The EMO approach allows to target the impact of a process modification at the global level of the energy cost of the process, including the combined production of heat and mechanical power in a gas turbine and the steam network. Starting with a classical methane conversion of 60% for the classical system, we identify solutions with up to 93% of the overall methane conversion when we transform the net mechanical power produced into methane savings at the country level. The interest of the approach is the possibility of computing the impact of the process modifications suggested by the analysis of the shape of the heat cascade on the overall energy balance of the plant without having to simulate in many details the steam and the heat exchanger network.
http://hdl.handle.net/2268/74779

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Escape7.pdfAuthor preprint76.39 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.