Reference : Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation.
Scientific journals : Article
Life sciences : Biochemistry, biophysics & molecular biology
Life sciences : Anatomy (cytology, histology, embryology...) & physiology
http://hdl.handle.net/2268/5977
Proteomic changes in rat hippocampus and adrenals following short-term sleep deprivation.
English
Poirrier, Jean-Etienne [Université de Liège - ULg> > > > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc. > >]
Guillonneau, Francois [Université de Liège - ULg> > > > Laboratoire de spectrométrie de masse> > >]
Renaut, Jenny [Centre de Recherche Public-Gabriel Lippmann> > Department Environment and Agrobiotechnologies> > > > >]
Sergeant, Kjell [Centre de Recherche Public-Gabriel Lippmann> > Department Environment and Agrobiotechnologies> > > > >]
Luxen, André mailto [Université de Liège - ULg > Département de chimie (sciences) > Chimie organique de synthèse - Centre de recherches du cyclotron >]
Maquet, Pierre mailto [Centre Hospitalier Universitaire de Liège - CHU > > Neurologie Sart Tilman >]
Leprince, Pierre mailto [Université de Liège - ULg > > CNCM/ Centre fac. de rech. en neurobiologie cell. et moléc. >]
2008
Proteome Science
6
14
Yes (verified by ORBi)
International
1477-5956
England
[en] DIGE ; Stress ; cell metabolism ; synapse ; synaptic process
[en] ABSTRACT: BACKGROUND: To identify the biochemical changes induced by sleep deprivation at a proteomic level, we compared the hippocampal proteome of rats either after 4 hours of sleep or sleep deprivation obtained by gentle handling. Because sleep deprivation might induce some stress, we also analyzed proteomic changes in rat adrenals in the same conditions. After sleep deprivation, proteins from both tissues were extracted and subjected to 2D-DIGE analysis followed by protein identification through mass spectrometry and database search. RESULTS: In the hippocampus, 87 spots showed significant variation between sleep and sleep deprivation, with more proteins showing higher abundance in the latter case. Of these, 16 proteins were present in sufficient amount for a sequencing attempt and among the 12 identified proteins, inferred affected cellular functions include cell metabolism, energy pathways, transport and vesicle trafficking, cytoskeleton and protein processing. Although we did not observe classical, macroscopic effect of stress in sleep-deprived rats, 47 protein spots showed significant variation in adrenal tissue between sleep and sleep deprivation, with more proteins showing higher abundance following sleep. Of these, 16 proteins were also present in sufficient amount for a sequencing attempt and among the 13 identified proteins, the most relevant cellular function that was affected was cell metabolism. CONCLUSION: At a proteomic level, short term sleep deprivation is characterized by a higher expression of some proteins in the hippocampus and a lower abundance of other proteins in the adrenals (compared to normal sleep control). Altogether, this could indicate a general activation of a number of cellular mechanisms involved in the maintenance of wakefulness and in increased energy expenditure during sleep deprivation. These findings are relevant to suggested functions of sleep like energy repletion and the restoration of molecular stocks or a more global homeostasis of synaptic processes.
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA ; Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS ; Fonds Léon frédéricq ; Belgian Association for Sleep research
Researchers ; Students
http://hdl.handle.net/2268/5977
10.1186/1477-5956-6-14

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
Poirrier2008.pdfPublisher postprint1.31 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.