Reference : Within-patient variability of F-18-FDG: Standardized uptake values in normal tissues
Scientific journals : Article
Human health sciences : Radiology, nuclear medicine & imaging
http://hdl.handle.net/2268/5525
Within-patient variability of F-18-FDG: Standardized uptake values in normal tissues
English
Paquet, Nancy [> > > >]
Albert, Adelin mailto [Université de Liège - ULg > Département des sciences de la santé publique > Informatique médicale et biostatistique >]
Willems, Jacqueline mailto [Centre Hospitalier Universitaire de Liège - CHU > > Médecine nucléaire >]
Hustinx, Roland mailto [Université de Liège - ULg > Département des sciences cliniques > Médecine nucléaire]
May-2004
Journal of Nuclear Medicine
Soc Nuclear Medicine Inc
45
5
784-788
Yes (verified by ORBi)
International
0161-5505
Reston
[en] instrumentation ; oncology ; F-18-FDG PET ; standardized uptake value ; test-retest variability
[en] The aim of this study was to evaluate the test-retest variability of standardized uptake values (SUVs) in normal tissues and the impact of various methods for measuring the SUV. Methods: SUVs were determined in 70 cancer-free patients (40 female and 30 male) on 2 occasions an average of 271 d apart. Mean values for body weight and height, blood glucose level, injected dose, and uptake period did not change between the 2 groups of studies. Four regions of interest (ROIs) were placed-on the liver, lung, mediastinum, and trapezius muscle. Mean and maximum SUVs normalized for body weight were obtained, and normalizations were then applied for lean body mass (LBM), LBM and blood glucose level, body surface area (BSA), and BSA and blood glucose level. Results: In the lungs and muscle, metabolic activity within the ROIs was significantly different in the 2 studies, no matter which method was used for the SUVs. The differences ranged from 0.02 to 0.1 for SUV normalized for body weight and SUV normalized for LBM and from 0.001 to 0.002 for SUV normalized for BSA. In the liver, results were similar for all SUVs, except for maximum SUV corrected for LBM and maximum SUV corrected for LBM and blood glucose level. The metabolic activity measured in the mediastinum was also comparable in the 2 studies, regardless of the type of SUV. When investigating whether any normalization method for SUVs reduces variability and improves test-retest concordance, we found no significant superiority for any. The best intraclass correlation coefficients were obtained with the SUV normalized for body weight, in both the liver and the mediastinum, but the coefficients of variation were similar for all 3 mean SUVs that were not corrected for glucose level (range, 10.8%-13.4%). However, normalizing for blood glucose level increased the variability and decreased the level of concordance between studies. Conclusion: The SUVs measured in normal liver and mediastinum in cancer-free patients are stable over time, no matter which normalization is used. Correcting for blood glucose level increases the variability of the values and should therefore be avoided. Normalizing for BSA or LBM does not improve the reproducibility of the measurements.
http://hdl.handle.net/2268/5525

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Paquet N et al, JNM 2004.pdfNo commentaryPublisher postprint65.18 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.