Reference : Diagnostics of the jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GH...
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Earth sciences & physical geography
http://hdl.handle.net/2268/5131
Diagnostics of the jovian aurora deduced from ultraviolet spectroscopy: Model and HST/GHRS observations
English
Dols, V. [> > > >]
Gérard, Jean-Claude mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
Clarke, J. T. [> > > >]
Gustin, Jacques mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
Grodent, Denis mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
2000
Icarus: International Journal of Solar System Studies
Academic Press
147
1
251-266
Yes (verified by ORBi)
International
0019-1035
San Diego
CA
[en] Jupiter ; aurora ; HST
[en] A model coupling an electron energy degradation code with a detailed synthetic spectrum of the H-2 Lyman and Werner band system is used to calculate the emerging auroral ultraviolet spectra from Jupiter's atmosphere excited by electrons with different initial energy distributions. The atmospheric model is adapted from the vertical P-T profile measured by the Galileo probe and midlatitude model hydrocarbon photochemistry. Each altitude layer, with its own gas temperature, contributes to the emergent ultraviolet spectrum and the absorbers are vertically distributed within the source region of the auroral emissions. Examples of the calculated spectra are shown to validate the synthetic spectrum and to illustrate the importance of the electron energy distribution and the vertical structure. The model is then applied to the analysis of seven HST/GHRS spectra of the 1200-1700 Angstrom region obtained with 5-Angstrom resolution at various locations in the north and south Jovian aurora. These spectra have different color ratios which characterize the energy of the precipitated electrons, although they do not have a high enough spectral resolution to permit a determination of the H-2 temperature. We find that the characteristic energy of the assumed initial Maxwellian distribution ranges between 17 and 40 keV. A clear signature of acetylene absorption is observed near 1520, 1480, and 1440 Angstrom where the C2H2 cross section shows strong absorption peaks. The acetylene column abundance overlying the emission peak varies from 0.02 to 0.2 of the methane column. A better fit is obtained for some spectra when ethane absorption is added. The C2H6 column abundance varies from 0 to 0.5 of the methane column. These changes relative to methane are presumably the result of perturbations by heat released by the fast electron thermalization and/or perturbations to the hydrocarbon chemistry resulting from the production of H atoms by the aurora, A spectrum of the Io flux tube footprint and its trailing tail shows an ultraviolet color and hydrocarbon absorption quite similar to some of the main oval spectra, This observation suggests that the electrons of the Io flux tube are energized to a few tens of keV, similar to the electron precipitated in the main ovals and polar caps. Echelle spectra between 1216 and 1220 Angstrom at 0.07 Angstrom resolution are also compared with the model fitting best the mid-resolution spectra. It is found that the effective H-2 rovibrational temperature associated with the echelle spectra are significantly higher than predicted by the mid-latitude model. A large vertical temperature gradient just above the methane homopause due to large heating by auroral precipitation is a plausible explanation for this difference. (C) 2000 Academic Press.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/5131
10.1006/icar.2000.6415

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
dols_2000.pdfPublisher postprint454.19 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.