No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
Derivation of Auroral Conductances from IMAGE FUV
Immel, T. J.; Mende, S. B.; Frey, H. U. et al.
2001AGU Spring meeting
Editorial reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
0310 Airglow and aurora; 0358 Thermosphere--energy deposition
Abstract :
[en] Auroral emissions are observed in 3 separate Far-Ultraviolet (FUV) wavelength regimes by IMAGE. The Wideband Imaging Camera (WIC) is sensitive mainly to N[SUB]2[/SUB] LBH and N I emissions in the 140-190-nm range, while the Spectrographic Imager (SI) spectrally separates the OI 135.6-nm emission and Doppler shifted hydrogen emissions of the proton aurora at 121.8 nm. The brightness of the N[SUB]2[/SUB] LBH and OI 135.6-nm emissions depend in part on the spectrum and total energy flux of incoming electrons, and on the height-density profile of the respective species, and O[SUB]2[/SUB]. Due mainly to these atmospheric factors, the ratio of the N[SUB]2[/SUB] and OI emissions depends strongly on the characteristic energy of precipitating electrons which, once estimated, can in turn be used to calculate the total energy flux. The proton aurora generates secondary electrons, which excite additional emissions of N[SUB]2[/SUB] and OI. It is not possible to absolutely determine either the total proton energy flux or the characteristic proton energy (<E[SUB]p[/SUB]>) with a single proton imaging channel. However, the proton-induced N[SUB]2[/SUB] and OI emissions depend mainly on the total proton energy flux, so reasonable estimates of <E[SUB]p[/SUB]> can be used in the calculation of proton energy input. Ground-based or in-situ observations of proton energies can help in this determination. With accurate corrections for N[SUB]2[/SUB] and OI airglow emissions, and formulae such as those provided by Robinson et al. [1987], IMAGE FUV can provide global maps of height-integrated conductivity (conductance) in the auroral oval. It is also possible to examine the degree to which the proton aurora contributes to enhanced conductance on a global scale. The promise of providing these conductances using IMAGE's real-time capabilities will be discussed. Robinson, R. M., R. R. Vondrak, K. Miller, T. Dabbs, and D. Hardy, On Calculating Ionospheric Conductances from the Flux and Energy of Precipitating Electrons, J. Geophys. Res., 92, 2566, 1987.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Immel, T. J.;  Space Sciences Laboratory University of California Berkeley , Centennial Drive at Grizzly Peak, Berkeley, CA 94720-7450 United States
Mende, S. B.;  Space Sciences Laboratory University of California Berkeley , Centennial Drive at Grizzly Peak, Berkeley, CA 94720-7450 United States
Frey, H. U.;  Space Sciences Laboratory University of California Berkeley , Centennial Drive at Grizzly Peak, Berkeley, CA 94720-7450 United States
Gérard, Jean-Claude  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Hubert, Benoît  ;  Université de Liège - ULiège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Language :
English
Title :
Derivation of Auroral Conductances from IMAGE FUV
Publication date :
01 May 2001
Event name :
AGU Spring meeting
Event organizer :
American Geophysical Union
Event place :
United States
Event date :
2001
Audience :
International
Peer reviewed :
Editorial reviewed
Available on ORBi :
since 25 December 2009

Statistics


Number of views
50 (3 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi