Reference : HST/GHRS ultraviolet spectroscopy and model diagnostics of the Jovian aurora.
Scientific congresses and symposiums : Paper published in a book
Physical, chemical, mathematical & earth Sciences : Space science, astronomy & astrophysics
http://hdl.handle.net/2268/33617
HST/GHRS ultraviolet spectroscopy and model diagnostics of the Jovian aurora.
English
Gérard, Jean-Claude mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
Dols, V. [LPAP, U. of Liège]
Gustin, Jacques mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
Grodent, Denis mailto [Université de Liège - ULg > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP) >]
Clarke, J. T. [SPRL, U. of Michigan]
1999
Bulletin of the American Astronomical Society
31
1192
No
No
International
[en] Jupiter: UV Spectroscopy ; Jupiter: Aurorae
[en] A model coupling a detailed synthetic spectrum of the H_2 Lyman and Werner band systems with an electron energy degradation code is applied to the analysis of 7 GHRS spectra of the 1200-1700 { Angstroms} region obtained with a ~ 5 { Angstroms} resolution at various locations in the north and south Jovian aurora. The observed color ratios indicate that the characteristic energy of the assumed initial Maxwellian distribution ranges between 17 and 40 keV. A clear signature of acetylene is observed near the absorption peaks at 1520, 1480 and 1440 { Angstroms}. The C_2H_2 column overlying the emission peak varies from 0.02 to 0.2 of the methane column. A better fit is obtained for some spectra when ethane absorption is added. The changing mixing ratios relative to methane are attributed to perturbations by heat released by the fast electron thermalization and/or perturbations to the hydrocarbon chemistry resulting from the production of H atoms by the aurora. A spectrum of the Io magnetic footprint and its trailing tail shows ultraviolet color and hydrocarbon absorption charateristics quite similar to some of the main oval spectra. This observation implies that the electrons of the Io flux tube are energized to a few tens of keV, similar to the electron precipitated in the main ovals and polar caps. Echelle spectra between 1216 and 1220 { Angstroms} at 0.07 { Angstroms} resolution are also compared with the model best fitting the closely spaced in time mid-resolution spectrum. It is found that the effective H_2 rovibrational temperature associated with the Echelle spectra is significantly higher than predicted by the model. A steep temperature gradient near the methane homopause due to large heating by auroral precipitation is a plausible explanation for this difference. We acknowledge funding by NASA and the PRODEX program of the European Space Agency.
Researchers ; Professionals
http://hdl.handle.net/2268/33617
also: http://hdl.handle.net/2268/33557
http://adsabs.harvard.edu/abs/1999BAAS...31Q1192G

There is no file associated with this reference.

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.