Reference : Catalytic Properties of Class a Beta-Lactamases: Efficiency and Diversity
Scientific journals : Article
Life sciences : Biochemistry, biophysics & molecular biology
http://hdl.handle.net/2268/28918
Catalytic Properties of Class a Beta-Lactamases: Efficiency and Diversity
English
Matagne, André mailto [Université de Liège - ULg > Département des sciences de la vie > Enzymologie, Centre d'Ingénierie des Protéines > >]
Lamotte-Brasseur, Josette [Université de Liège - ULG > > Centre d'Ingénierie des Protéines > >]
Frère, Jean-Marie mailto [Université de Liège - ULg > Département des sciences de la vie > Département des sciences de la vie >]
1-Mar-1998
Biochemical Journal
330
(Pt 2)
581-98
Yes (verified by ORBi)
International
0264-6021
[en] beta-Lactamases are the main cause of bacterial resistance to penicillins, cephalosporins and related beta-lactam compounds. These enzymes inactivate the antibiotics by hydrolysing the amide bond of the beta-lactam ring. Class A beta-lactamases are the most widespread enzymes and are responsible for numerous failures in the treatment of infectious diseases. The introduction of new beta-lactam compounds, which are meant to be 'beta-lactamase-stable' or beta-lactamase inhibitors, is thus continuously challenged either by point mutations in the ubiquitous TEM and SHV plasmid-borne beta-lactamase genes or by the acquisition of new genes coding for beta-lactamases with different catalytic properties. On the basis of the X-ray crystallography structures of several class A beta-lactamases, including that of the clinically relevant TEM-1 enzyme, it has become possible to analyse how particular structural changes in the enzyme structures might modify their catalytic properties. However, despite the many available kinetic, structural and mutagenesis data, the factors explaining the diversity of the specificity profiles of class A beta-lactamases and their amazing catalytic efficiency have not been thoroughly elucidated. The detailed understanding of these phenomena constitutes the cornerstone for the design of future generations of antibiotics.
http://hdl.handle.net/2268/28918

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
MatagneReview B.J.1998.pdfPublisher postprint909.08 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.