Reference : Tree based ensemble models regularization by convex optimization
Scientific congresses and symposiums : Unpublished conference/Abstract
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/28832
Tree based ensemble models regularization by convex optimization
English
Cornélusse, Bertrand mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Geurts, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
12-Dec-2009
Yes
International
NIPS-09 workshop on Optimization for Machine Learning
12-12-2009
Whistler
Canada
[en] Ensemble methods ; regularization ; Convex optimization
[en] Tree based ensemble methods can be seen as a way to learn a kernel from a sample of input-output pairs. This paper proposes a regularization framework to incorporate non-standard information not used in the kernel learning algorithm, so as to take advantage of incomplete information about output values and/or of some prior information about the problem at hand. To this end a generic convex optimization problem is formulated which is first customized into a manifold regularization approach for semi-supervised learning, then as a way to exploit censored output values, and finally as a generic way to exploit prior information about the problem.
SystMod
Fonds pour la formation à la Recherche dans l'Industrie et dans l'Agriculture (Communauté française de Belgique) - FRIA
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/28832

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
OPT2009_f.pdfAuthor preprint133.41 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.