Article (Scientific journals)
Cloning of the Rat Brain Cdna Encoding for the Slc-1 G Protein-Coupled Receptor Reveals the Presence of an Intron in the Gene
Lakaye, Bernard; Minet, Arlette; Zorzi, Willy et al.
1998In Biochimica et Biophysica Acta, 1401 (2), p. 216-20
Peer Reviewed verified by ORBi
 

Files


Full Text
1998, BBA
Publisher postprint (303.9 kB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Abstract :
[en] In order to isolate new G protein-coupled receptors expressed in the cerebral cortex, a set of degenerate oligonucleotides corresponding to the third and seventh transmembrane segment were synthetized. Their use in PCR on rat brain cortex mRNA amplified several cDNA fragments. One of them, a 526 bp sequence, encoded for what was at that time an unknown G protein-coupled receptor. An oligonucleotide derived from the sequence was then used as a probe to isolate the receptor cDNA from a rat brain cDNA library. It encodes for a 353aa protein with seven transmembrane segments, three consensus N-glycosylation sites at the amino terminus and several potential phosphorylation sites in the intracellular loops. This protein shares 91% overall identity with a recently cloned human somatostatin-like receptor of 402aa named SLC-1. This suggests that we have cloned the rat orthologue of the human SLC-1. However, the extracellular N-terminus of the human receptor is 49 amino acids longer and shows 50% identity with the rat one. Because the human sequence was deduced from genomic DNA, we suspected the presence of an intron in the gene. This was confirmed by PCR using primers spanning the intron. On the basis of the sequence of a 128 kb fragment of chromosome 22 encompassing the SLC-1 gene, we were able to deduce a corrected amino acids sequence for the human receptor. So both rat and human SLC-1 receptors are 353aa long, with three consensus N-glycosylation sites. They share 96% identity at the amino acid level and are encoded by a gene containing one intron in the coding sequence.
Disciplines :
Biochemistry, biophysics & molecular biology
Author, co-author :
Lakaye, Bernard ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Minet, Arlette ;  Centre Hospitalier Universitaire de Liège - CHU > Neurologie Sart Tilman
Zorzi, Willy ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Histologie humaine
Grisar, Thierry ;  Université de Liège - ULiège > Département des sciences biomédicales et précliniques > Biochimie et physiologie humaine et pathologique
Language :
English
Title :
Cloning of the Rat Brain Cdna Encoding for the Slc-1 G Protein-Coupled Receptor Reveals the Presence of an Intron in the Gene
Publication date :
10 February 1998
Journal title :
Biochimica et Biophysica Acta
ISSN :
0006-3002
eISSN :
1878-2434
Publisher :
Elsevier, Amsterdam, Netherlands
Volume :
1401
Issue :
2
Pages :
216-20
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 05 November 2009

Statistics


Number of views
39 (1 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
68
Scopus citations®
without self-citations
66
OpenCitations
 
58

Bibliography


Similar publications



Contact ORBi