Reference : Surface-Impedance Boundary Conditions in Nonlinear Time-Domain Finite-Element Calculations
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Electrical & electronics engineering
http://hdl.handle.net/2268/22974
Surface-Impedance Boundary Conditions in Nonlinear Time-Domain Finite-Element Calculations
English
Gyselinck, Johan [> > > >]
Dular, Patrick mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
Geuzaine, Christophe mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
V Sabariego, Ruth mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Applied and Computational Electromagnetics (ACE) >]
2008
Proceedings of the XX Symposium Electromagnetic Phenomena in Nonlinear Circuits (EPNC2008)
Yes
No
International
Lille
France
XX Symposium Electromagnetic Phenomena in Nonlinear Circuits (EPNC2008)
July 2-4
Lille
France
[en] The authors propose a novel nonlinear time-domain extension of the well-known frequency-domain
surface-impedance method in computational magnetodynamics. Herein the 1-D eddy-current problem in a massive conducting region (semi-infinite slab) is considered via a number of exponentially decreasing trigonometric basis functions that cover the relevant skin-depth (or frequency)
range of the application at hand. The resulting nonlinear equations are solved using the Newton-Raphson method. The proposed method is elaborated for the magnetic-vector-potential formulation and validated by means of a simple 2-D test case.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/22974
also: http://hdl.handle.net/2268/38680

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
08epnc_gyselinck_sibcnl.pdfNo commentaryPublisher postprint444.89 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.