Article (Scientific journals)
Where Ion Mobility and Molecular Dynamics Meet to Unravel the (Un)Folding Mechanisms of an Oligorotaxane Molecular Switch
Hanozin, Emeline; Mignolet, Benoît; Morsa, Denis et al.
2017In ACS Nano, 11 (10), p. 10253-10263
Peer Reviewed verified by ORBi
 

Files


Full Text
Hanozin_ACSNano_2017.pdf
Publisher postprint (3.11 MB)
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Born-Oppenheimer molecular dynamics; CIU; ETnoD; Amphiphiles; Conformations; Gases; Ions; Mass spectrometry; Molecules; Spectrometry; Ion mobility-mass spectrometry; Molecular switches; Molecular dynamics
Abstract :
[en] At the interface between foldamers and mechanically interlocked molecules, oligorotaxanes exhibit a spring-like folded secondary structure with remarkable mechanical and physicochemical properties. Among these properties, the ability of oligorotaxanes to act as molecular switches through controlled modulations of their spatial extension over (un)folding dynamics is of particular interest. The present study aims to assess and further characterize this remarkable feature in the gas phase using mass spectrometry tools. In this context, we focused on the [4]5NPR+12 oligorotaxane molecule complexed with PF6 - counterion and probed its co-conformational states as a function of the in-source-generated charge states. Data were interpreted in light of electronic secondary structure computations at the PM6 and DFT levels. Our results highlight two major co-conformational groups associated either with folded compact structures, notably stabilized by intramolecular π-π interactions and predominant for low charge states or with fully stretched structures resulting from significant Coulombic repulsions at high charge states. Between, the oligorotaxane adopts intermediate folded co-conformations, suggesting a stepwise unfolding pathway under increasing repulsive Coulombic constraints. The reversibility of this superstructural transition was next interrogated under electron-driven (nondissociative electron transfer) and heat-driven (collision-induced unfolding) activation stimuli. The outcomes support the feasibility to either unfold or (partially) refold the oligorotaxane foldamer on purpose in the gas phase. Our results show that the balance between the stabilizing π-π interactions and the versatile Coulomb interactions dictates the elongation state of the foldamer in the gas phase and emphasizes the adequacy of mass spectrometry tools for the superstructural characterization of desolvated prototypical artificial molecular machines. © 2017 American Chemical Society.
Disciplines :
Chemistry
Author, co-author :
Hanozin, Emeline ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Mignolet, Benoît ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
Morsa, Denis  ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Sluysmans, Damien  ;  Université de Liège - ULiège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires
Duwez, Anne-Sophie  ;  Université de Liège - ULiège > Département de chimie (sciences) > Nanochimie et systèmes moléculaires
Stoddart, J. F.;  Mechanostereochemistry Group, Northwestern University, Evanston, IL, United States
Remacle, Françoise  ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de chimie physique théorique
De Pauw, Edwin  ;  Université de Liège - ULiège > Département de chimie (sciences) > Laboratoire de spectrométrie de masse (L.S.M.)
Language :
English
Title :
Where Ion Mobility and Molecular Dynamics Meet to Unravel the (Un)Folding Mechanisms of an Oligorotaxane Molecular Switch
Publication date :
October 2017
Journal title :
ACS Nano
ISSN :
1936-0851
eISSN :
1936-086X
Publisher :
American Chemical Society
Volume :
11
Issue :
10
Pages :
10253-10263
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
F.R.S.-FNRS Grant No. 2.5020.11
Funders :
F.R.S.-FNRS - Fonds de la Recherche Scientifique [BE]
CÉCI - Consortium des Équipements de Calcul Intensif [BE]
Available on ORBi :
since 12 December 2017

Statistics


Number of views
161 (28 by ULiège)
Number of downloads
7 (7 by ULiège)

Scopus citations®
 
20
Scopus citations®
without self-citations
15
OpenCitations
 
22

Bibliography


Similar publications



Contact ORBi