Paper published in a book (Scientific congresses and symposiums)
A Stochastic Multi-scale Model For Predicting MEMS Stiction Failure
Hoang Truong, Vinh; Paquay, Stéphane; Golinval, Jean-Claude et al.
2016In Proceedings of the SEM XIII International Congress and Exposition on Experimental and Applied Mechanics. (SEMXIII 2016)
 

Files


Full Text
98_hoang.pdf
Author postprint (696.62 kB)
Request a copy
Annexes
2016_SEM_presentation_v2.pdf
Publisher postprint (3.97 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Stiction; Adhesive Contact; random surface; Multi-scale; uncertainty quantification
Abstract :
[en] Adhesion is an important phenomenon in the context of MEMS for which the surface forces become dominant in comparison with the body forces. Because the magnitudes of the adhesive forces strongly depend on the surface interaction distances, which in turn evolve with the roughness of the contacting surfaces, the adhesive forces cannot be determined in a deterministic way. To quantify the uncertainties on the structural stiction behavior of a MEMS, this work proposes a “stochastic multi-scale methodology”. The key ingredient of the method is the evaluation of the random meso-scale apparent contact forces, which homogenize the effect of the nano-scale roughness and are integrated into a numerical model of the studied structure as a random contact law. To obtain the probabilistic behavior at the structural MEMS scale, a direct method needs to evaluate explicitly the meso-scale apparent contact forces in a concurrent way with the stochastic multi-scale approach. To reduce the computational cost, a stochastic model is constructed to generate the random meso-scale apparent contact forces. To this end, the apparent contact forces are parameterized by a vector of parameters before applying a polynomial chaos expansion in order to construct a mathematical model representing the probability of the random parameters vector. The problem of miro-beam stiction is then studied in a probabilistic way.
Research center :
Computational & Multiscale Mechanics of Materials
Disciplines :
Mechanical engineering
Materials science & engineering
Author, co-author :
Hoang Truong, Vinh ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Paquay, Stéphane;  Open Engineering SA
Golinval, Jean-Claude  ;  Université de Liège > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures
Wu, Ling ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Arnst, Maarten ;  Université de Liège > Département d'aérospatiale et mécanique > Computational and stochastic modeling
Noels, Ludovic  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A Stochastic Multi-scale Model For Predicting MEMS Stiction Failure
Publication date :
06 June 2016
Event name :
SEM XIII International Congress and Exposition on Experimental and Applied Mechanics. (SEMXIII 2016)
Event organizer :
SEM
Event place :
Orlando, United States
Event date :
6 - 9 June, 2016
Audience :
International
Main work title :
Proceedings of the SEM XIII International Congress and Exposition on Experimental and Applied Mechanics. (SEMXIII 2016)
Pages :
8
Name of the research project :
The research has been funded by the Walloon Region under the agreement no 1117477 (CT-INT 2011-11-14) and by the Romanian UEFISCDI Agency contract ERA-NET MNT no 7-063/2012 (2012-2015) in the context of the ERA-NET MNT framework.
Funders :
FRIA - Fonds pour la Formation à la Recherche dans l'Industrie et dans l'Agriculture [BE]
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
Available on ORBi :
since 14 July 2016

Statistics


Number of views
79 (24 by ULiège)
Number of downloads
84 (16 by ULiège)

Bibliography


Similar publications



Contact ORBi