Reference : Modeling of Electro-Mechanical Coupling Problem using the Finite Element Formulation
Diverses speeches and writings : Conference given outside the academic context
Engineering, computing & technology : Mechanical engineering
http://hdl.handle.net/2268/19855
Modeling of Electro-Mechanical Coupling Problem using the Finite Element Formulation
English
Rochus, Véronique mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures >]
Rixen, Daniel J. [TU-Delft, Faculty of Design, Engineering and Production Engineering Mechanics - Dynamics, Mekelweg 2, Delft, 2628 CD The Netherlands > > > >]
Golinval, Jean-Claude mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures >]
Mar-2003
12
International
SPIE's 10th Annual International Symposium on Smart Structures and Materials
San Diego
USA
[en] Finite Element Method (FEM), Strong Electro-Mechanical Coupling, Micro-Electro-Mechanical Systems (MEMS), Non-Linearity
[en] A modeling procedure is proposed to handle strong electro-mechanical coupling appearing in micro-electromechanical systems (MEMS). The finite element method is used to discretize simultaneously the electrostatic and mechanical fields. The formulation is consistently derived from variational principles based on the electromechanical free energy. In classical weakly coupled formulations staggered iteration is used between the electrostatic and the mechanical domain. Therefore, in those approaches, linear stiffness is evaluated by finite differences and equilibrium is reached typically by relaxation techniques. The strong coupling formulation presented here allows to derive exact tangent matrices of the electro-mechanical system. Thus it allows to compute non-linear equilibrium positions using Newton-Raphson type of iterations combined with adaptive meshing in case of large displacements. Furthermore, the tangent matrix obtained in the method exposed in this paper greatly simplifies the computation of vibration modes and frequencies of the cou pled system around equilibrium configurations. The non-linear variation of frequencies with respect to voltage and stiffness can be then be investigated until pull-in appears. In order to illustrate the effectiveness of the proposed formulation numerical results are shown first for the reference problem of a simple flexible capacitor, then for the model of a micro-bridge.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/19855

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
2003_SPIE_San_diego.pdfPublisher postprint252.8 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.