Reference : Carbon nanotubes synthesis by CCVD process : kinetic study on a Fe-Co/Al2O3 catalyst
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Chemistry
Physical, chemical, mathematical & earth Sciences : Physics
Engineering, computing & technology : Chemical engineering
Engineering, computing & technology : Materials science & engineering
http://hdl.handle.net/2268/19789
Carbon nanotubes synthesis by CCVD process : kinetic study on a Fe-Co/Al2O3 catalyst
English
Pirard, Sophie [Université de Liège - ULG > Département de Chimie appliquée > Génie chimique - Chimie physique appliquée > >]
Douven, Sigrid mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Chimie physique appliquée > >]
Bossuot, Christophe [Université de Liège - ULG > Département de Chimie appliquée > Génie chimique - Chimie physique appliquée > >]
Heyen, Georges [Université de Liège - ULg > Département de chimie appliquée > LASSC (Labo d'analyse et synthèse des systèmes chimiques) >]
Pirard, Jean-Paul mailto [Université de Liège - ULg > Département de chimie appliquée > Génie chimique - Chimie physique appliquée > >]
May-2007
Carbon
Pergamon-Elsevier Science Ltd
45
6
1167-1175
Yes (verified by ORBi)
International
0008-6223
Oxford
[en] A kinetic study was performed to describe the initial specific rate of multi-walled carbon nanotube synthesis by catalytic chemical vapor deposition (CCVD) on a bimetallic cobalt-iron catalyst at high temperature using ethylene decomposition to solid carbon and gaseous hydrogen. The study uses a mass spectrometer that allows reaction rate to be inferred from the exhaust gas composition measurements. The aim is to obtain a better understanding of the elementary steps involved in the production of carbon nanotubes so as to derive phenomenological kinetic models in agreement with experimental data. The best models assume the elimination of the first hydrogen atom from adsorbed ethylene as rate determining step and involve a hydrogen adsorption weak enough to be neglected. It was proved that hydrogen partial pressure has no influence on initial reaction rate of carbon nanotube synthesis with the catalyst used for this study. Activation energy and ethylene adsorption enthalpy were found to be equal to around 130 and - 130 kJ mol(-1), respectively. (C) 2007 Elsevier Ltd. All rights reserved.
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS
http://hdl.handle.net/2268/19789

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
Pirard S 07-Carbon.pdfPublisher postprint342.11 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.