Reference : Context-dependent feature analysis with random forests
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/197176
Context-dependent feature analysis with random forests
English
Sutera, Antonio mailto [Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique >]
Louppe, Gilles mailto [CERN - NYU > > > >]
Huynh-Thu, Vân Anh mailto [Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Wehenkel, Louis mailto [Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Geurts, Pierre mailto [Université de Liège > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique >]
Jun-2016
Uncertainty In Artificial Intelligence: Proceedings of the Thirty-Two Conference (2016)
Yes
No
International
Conference on Uncertainty in Artificial Intelligence 2016
June 25-29 2016
Jersey City
Etat-Unis
[en] machine learning ; random forest ; variable importances
http://hdl.handle.net/2268/197176
https://arxiv.org/abs/1605.03848
http://auai.org/uai2016/proceedings/papers/253.pdf
In many cases, feature selection is often more complicated than identifying a single subset of input variables that would together explain the output. There may be interactions that depend on contextual information, i.e., variables that reveal to be relevant only in some specific circumstances. In this setting, the contribution of this paper is to extend the random forest variable importances framework in order (i) to identify variables whose relevance is context-dependent and (ii) to characterize as precisely as possible the effect of contextual information on these variables. The usage and the relevance of our framework for highlighting context-dependent variables is illustrated on both artificial and real datasets.

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
sutera16.pdfMain articleAuthor preprint387.27 kBView/Open

Additional material(s):

File Commentary Size Access
Open access
sutera16-supp.pdfSupplementary materials179.89 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.