Article (Scientific journals)
Acid-base imbalances during a 120 km endurance race compared by traditional and simplified strong ion difference methods.
Viu, J.; Jose-Cunilleras, E.; Armengou, L. et al.
2010In Equine Veterinary Journal, (38), p. 76-82
Peer Reviewed verified by ORBi
 

Files


Full Text
Abstract Viu_et_al-2010-Equine_Veterinary_Journal.pdf
Publisher postprint (58.6 kB)
Abstract
Request a copy

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Acid-Base Equilibrium/physiology; Acid-Base Imbalance; Animals; Electrolytes/blood; Female; Horse Diseases/blood/diagnosis; Horses; Male; Physical Conditioning, Animal/physiology; Physical Endurance/physiology; Sports
Abstract :
[en] REASONS FOR PERFORMING STUDY: Acid-base disturbances are traditionally assessed using the Henderson-Hasselbach equation. The simplified strong ion approach describes more accurately the complex acid-base and electrolyte abnormalities present in endurance horses. OBJECTIVE: To describe acid-base and electrolytes changes in fit horses competing in a FEI*** 120 km endurance race and to compare the traditional vs. strong ion approaches. METHODS: Thirty horses were initially enrolled in the study. Venous blood samples were obtained before the race (n = 25), at the second (n = 29; 65.4 km) and third vet-gates (n = 23, 97.4 km) and upon race completion (n = 17). Blood gas analysis was performed to determine pH, PCO(2), PO(2), Na(+), K(+) and iCa(++), and calculate HCO(3)(-), base excess and tCO(2). Packed cell volume and total protein, globulin, albumin, lactate, phosphate, glucose and creatinine concentrations, as well as muscle enzymes activities, were also determined. Calculated variables included strong ion difference (SIDm), strong ion gap (SIG) and nonvolatile buffer concentration (A(tot)). A longitudinal linear model using the general estimating equation methodology was used for statistical analysis. RESULTS: Mild but significant increases in PCO(2), SIDm, lactate, plasma protein, globulins and A(tot), as well as a decrease in potassium concentrations were observed from the second vet-gate to race finish when compared to prerace values (P < 0.05). Using the strong ion approach, 67% samples showed acid-base disturbances vs. 70% when using the traditional method, but their interpretations only matched in 24% of measurements. CONCLUSIONS: A complex acid-base imbalance characterised by a mild strong ion alkalosis (hypochloraemia attenuated by hyperlactataemia), nonvolatile buffer acidosis and compensatory mild respiratory acidosis were present in most horses, although pH did not significantly change during a 120 km endurance race. The strong ion approach to interpretation of acid-base balance should be favoured over the traditional approach in endurance horses, given the frequent and complex alterations in PCO(2), SIDm and A(tot) during a race.
Disciplines :
Veterinary medicine & animal health
Author, co-author :
Viu, J.
Jose-Cunilleras, E.
Armengou, L.
Cesarini Latorre, Carlota  ;  Université de Liège > Dép. clinique des animaux de compagnie et des équidés (DCA) > Médecine interne des équidés
Tarancon, I.
Rios, J.
Monreal, L.
Language :
English
Title :
Acid-base imbalances during a 120 km endurance race compared by traditional and simplified strong ion difference methods.
Publication date :
2010
Journal title :
Equine Veterinary Journal
ISSN :
0425-1644
eISSN :
2042-3306
Publisher :
Equine Veterinary Journal, United Kingdom
Issue :
38
Pages :
76-82
Peer reviewed :
Peer Reviewed verified by ORBi
Commentary :
(c) 2010 EVJ Ltd.
Available on ORBi :
since 07 April 2016

Statistics


Number of views
25 (0 by ULiège)
Number of downloads
0 (0 by ULiège)

Scopus citations®
 
40
Scopus citations®
without self-citations
37
OpenCitations
 
29

Bibliography


Similar publications



Contact ORBi