Reference : Generalized Pascal triangle for binomial coefficients of words
Scientific journals : Article
Physical, chemical, mathematical & earth Sciences : Mathematics
http://hdl.handle.net/2268/192271
Generalized Pascal triangle for binomial coefficients of words
English
Leroy, Julien mailto [Université de Liège > Département de mathématique > Mathématiques discrètes >]
Rigo, Michel mailto [Université de Liège > Département de mathématique > Mathématiques discrètes >]
Stipulanti, Manon mailto [Université de Liège > Département de mathématique > Mathématiques discrètes >]
2016
Advances in Applied Mathematics
Academic Press
80
24-47
Yes (verified by ORBi)
International
0196-8858
1090-2074
[en] Binomial coefficients ; Hausdorff distance ; Pascal triangle ; subword ; Lucas' theorem
[en] We introduce a generalization of Pascal triangle based on binomial coefficients of finite words. These coefficients count the number of times a word appears as a subsequence of another finite word. Similarly to the Sierpiński gasket that can be built as the limit set, for the Hausdorff distance, of a convergent sequence of normalized compact blocks extracted from Pascal triangle modulo 2, we describe and study the first properties of the subset of [0, 1] × [0, 1] associated with this extended Pascal triangle modulo a prime p.
Researchers
http://hdl.handle.net/2268/192271
10.1016/j.aam.2016.04.006

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
pascal-correction.pdfAuthor preprint512.76 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.