Reference : Representing arithmetic constraints with finite automata: An overview
Scientific congresses and symposiums : Paper published in a journal
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/18767
Representing arithmetic constraints with finite automata: An overview
English
Boigelot, Bernard mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique >]
Wolper, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Informatique (parallélisme et banques de données) >]
Jul-2002
Lecture Notes in Computer Science
Springer-Verlag Berlin
2401
Logics Programming, Proceedings
No
Yes
International
0302-9743
1611-3349
Berlin
18th International Conference on Logic Programming
July 27th to August 1st 2002
U Roskilde, Denmark
Copenhagen
Danemark
[en] arithmetic ; automata ; Presburger
[en] Linear numerical constraints and their first-order theory, whether defined over the reals or the. integers, are basic tools that appear in many areas of Computer Science. This paper overviews a set of techniques based on finite automata that lead to decision procedures and other useful algorithms, as well as to a normal form, for the first-order linear theory of the integers, of the reals, and of the integers and reals combined. This approach has led to an implemented tool, which has the so far unique capability of handling the linear. first-order theory of the integers and reals combined.
Communauté française de Belgique - Direction de la recherche scientifique - Actions de recherche concertées ; European IST-FET project ADVANCE (IST-1999-29082)
Researchers
http://hdl.handle.net/2268/18767
10.1007/3-540-45619-8_1
The original publication is available at www.springerlink.com

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
BW03-iclp.pdfPublisher postprint311.81 kBRequest copy
Open access
BW02-iclp.pdfAuthor postprint267.16 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.