No full text
Unpublished conference/Abstract (Scientific congresses and symposiums)
Critical role of oxygen photoreduction downstream of PSI in Symbiodinium: photoprotection, energetic adjustement and ROS production
Roberty, Stéphane; Bailleul, Benjamin; Berne, Nicolas et al.
20156th European Phycological Congress : Algae bring life to the world
Peer reviewed
 

Files


Full Text
No document available.

Send to



Details



Keywords :
Symbiodinium; Coral reefs; Photosynthesis
Abstract :
[en] The ecological success of symbiotic cnidarians (reef building-corals and sea anemones) relies on the symbiosis between cnidarians and photosynthetic dinoflagellates of the genus Symbiodinium. Photosynthetic organisms have evolved various photoprotective and regulatory mechanisms to cope with changing and high light intensities, but the nature and relative amplitude of these mechanisms is still a matter of debate in Symbiodinium. Few studies showed that molecular oxygen (O2) can be an efficient electron sink during photosynthesis in Symbiodinium, with an O2 uptake capacity that could represent up to half the maximum O2 evolution. In addition, members of clade A Symbiodinium were proposed to possess enhanced capabilities for alternative photosynthetic electron flows. In this work, the amplitude of photosynthetic alternative electron flows to oxygen (chlororespiration, Mehler reaction, mitochondrial respiration) and PSI cyclic electron flow were investigated in Symbiodinium strains belonging to different Clades (A, B and F). Joint measurements of oxygen evolution, PSI and PSII activities allowed us to demonstrate that photoreduction of oxygen downstream PSI by the so-called Mehler reaction is the main alternative electron sink at the onset and steady state of photosynthesis in all strains1. This mechanism in Symbiodinium sustains significant photosynthetic electron flux under high light, thus acting as a photoprotective mechanism and modifying the ratio of ATP/NADPH to match the requirements of carbon reduction. At higher temperature (26 to 33°C), the amplitude of Mehler reaction was still significantly increased but the capacity of enzymes responsible for superoxide detoxification largely decreased. This imbalance generated twice more ROS than during the treatment at 26°C, suggesting that under conditions known to induce coral bleaching, the photoprotective role of Mehler reaction can no longer be maintained, at least at short term.
Disciplines :
Aquatic sciences & oceanology
Author, co-author :
Roberty, Stéphane  ;  Université de Liège > Département de Biologie, Ecologie et Evolution > Ecophysiologie et physiologie animale
Bailleul, Benjamin
Berne, Nicolas ;  Université de Liège > Département des sciences de la vie > Génétique et physiologie des microalgues
Franck, Fabrice ;  Université de Liège > Labo de Bioénergétique
Cardol, Pierre  ;  Université de Liège > Département des sciences de la vie > Génétique et physiologie des microalgues
Language :
English
Title :
Critical role of oxygen photoreduction downstream of PSI in Symbiodinium: photoprotection, energetic adjustement and ROS production
Publication date :
August 2015
Event name :
6th European Phycological Congress : Algae bring life to the world
Event place :
London, United Kingdom
Event date :
23-28 August 2015
By request :
Yes
Audience :
International
Peer reviewed :
Peer reviewed
Available on ORBi :
since 06 October 2015

Statistics


Number of views
114 (10 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi