Article (Scientific journals)
Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2
Wang, Y.; Deutscher, N. M.; Palm, Mathias et al.
2016In Atmospheric Chemistry and Physics, 16, p. 2123-2138
Peer Reviewed verified by ORBi
 

Files


Full Text
acp-16-2123-2016.pdf
Publisher postprint (4.65 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
carbonyl sulfide; OCS; FTIR spectrometry; atmospheric composition
Abstract :
[en] Understanding carbon dioxide (CO2) biospheric processes is of great importance because the terrestrial exchange drives the seasonal and interannual variability of CO2 in the atmosphere. Atmospheric inversions based on CO2 concentration measurements alone can only determine net biosphere fluxes, but not differentiate between photosynthesis (uptake) and respiration (production). Carbonyl sulfide (OCS) could provide an important additional constraint: it is also taken up by plants during photosynthesis but not emitted during respiration, and therefore is a potential means to differentiate between these processes. Solar absorption Fourier Transform InfraRed (FTIR) spectrometry allows for the retrievals of the atmospheric concentrations of both CO2 and OCS from measured solar absorption spectra. Here, we investigate co-located and quasi-simultaneous FTIR measurements of OCS and CO2 performed at five selected sites located in the Northern Hemisphere. These measurements are compared to simulations of OCS and CO2 using a chemical transport model (GEOS-Chem). The coupled biospheric fluxes of OCS and CO2 from the simple biosphere model (SiB) are used in the study. The CO2 simulation with SiB fluxes agrees with the measurements well, while the OCS simulation reproduced a weaker drawdown than FTIR measurements at selected sites, and a smaller latitudinal gradient in the Northern Hemisphere during growing season when comparing with HIPPO (HIAPER Pole-to-Pole Observations) data spanning both hemispheres. An offset in the timing of the seasonal cycle minimum between SiB simulation and measurements is also seen. Using OCS as a photosynthesis proxy can help to understand how the biospheric processes are reproduced in models and to further understand the carbon cycle in the real world.
Disciplines :
Earth sciences & physical geography
Author, co-author :
Wang, Y.
Deutscher, N. M.
Palm, Mathias
Warneke, T.
Notholt, Justus
Baker, I.
Berry, J.
Suntharalingam, P.
Jones, N.
Mahieu, Emmanuel  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Lejeune, Bernard ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Groupe infra-rouge de phys. atmosph. et solaire (GIRPAS)
Hannigan, J.
Conway, S.
Mendonca, J.
Strong, K.
Campbell, J. E.
Wolf, A.
Kremser, S.
More authors (8 more) Less
Language :
English
Title :
Towards understanding the variability in biospheric CO2 fluxes: using FTIR spectrometry and a chemical transport model to investigate the sources and sinks of carbonyl sulfide and its link to CO2
Publication date :
25 February 2016
Journal title :
Atmospheric Chemistry and Physics
ISSN :
1680-7316
eISSN :
1680-7324
Publisher :
Copernicus Publications, Katlenburg-Lindau, Germany
Volume :
16
Pages :
2123-2138
Peer reviewed :
Peer Reviewed verified by ORBi
Available on ORBi :
since 28 September 2015

Statistics


Number of views
98 (22 by ULiège)
Number of downloads
100 (3 by ULiège)

Scopus citations®
 
21
Scopus citations®
without self-citations
11
OpenCitations
 
18

Bibliography


Similar publications



Contact ORBi