Article (Scientific journals)
Experimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Wan, Fangyi; Tran, Minh Phuong; Leblanc, Christophe et al.
2015In Mechanics of Materials, 91 (Part 1), p. 95-118
Peer Reviewed verified by ORBi
 

Files


Full Text
2016_MM_PPCNT.pdf
Author postprint (15.46 MB)
Download

NOTICE: this is the author’s version of a work that was accepted for publication in Mechanics of Materials. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Mechanics of Materials, 91:1 (2015), 95-118 DOI: 10.1016/j.mechmat.2015.07.004


All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Polypropylene; multi–walled carbon nanotubes; Nanocomposite foams; Computational micro–mechanics; Homogenization; LIMARC
Abstract :
[en] The compressive behavior of nanocomposite foams is studied by both experimental and computational micro-mechanics approaches with the aim of providing an efficient computational model for this kind of material. The nanocomposites based on polypropylene (PP) and different contents of multi-walled carbon nanotubes (CNTs) are prepared by melt mixing method. The nanocomposite samples are foamed using super-critical carbon dioxide (ScCO2) as blowing agent at different soaking temperatures. The influence of this foaming parameter on the morphological characteristics of the foam micro-structure is discussed. Differential Scanning Calorimetry (DSC) measurements are used to quantify the crystallinity degree of both nanocomposites and foams showing that the crystallinity degree is reduced after the foaming process. This modification leads to mechanical properties of the foam cell walls that are different from the raw nanocomposite PP/CNTs material. Three--point bending tests are performed on the latter to measure the flexural modulus in terms of the crystallinity degree. Uniaxial compression tests are then performed on the foamed samples under quasi-static conditions in order to extract the macro-scale compressive response. Next, a two-level multi-scale approach is developed to model the behavior of the foamed nanocomposite material. On the one hand, the micro-mechanical properties of nanocomposite PP/CNTs cell walls are evaluated from a theoretical homogenization model accounting for the micro-structure of the semi-crystalline PP, for the degree of crystallinity, and for the CNT volume fraction. The applicability of this theoretical model is demonstrated via the comparison with experimental data from the described experimental measurements and from literature. On the other hand, the macroscopic behavior of the foamed material is evaluated using a computational micro-mechanics model using tetrakaidecahedron unit cells and periodic boundary conditions to estimate the homogenized properties. The unit cell is combined with several geometrical imperfections in order to capture the elastic collapse of the foamed material. The numerical results are compared to the experimental measurements and it is shown that the proposed unit cell computational micro-mechanics model can be used to estimate the homogenized behavior, including the linear and plateau regimes, of nanocomposite foams.
Research center :
Center for Education and Research on Macromolecules (CERM)
Disciplines :
Chemistry
Mechanical engineering
Materials science & engineering
Author, co-author :
Wan, Fangyi;  Northewestern Polytechnical University
Tran, Minh Phuong;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Leblanc, Christophe  ;  Université de Liège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Béchet, Eric ;  Université de Liège > Département d'aérospatiale et mécanique > Conception géométrique assistée par ordinateur
Plougonven, Erwan  ;  Université de Liège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Léonard, Angélique  ;  Université de Liège > Département de chimie appliquée > Génie chimique - Procédés et développement durable
Detrembleur, Christophe ;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Noels, Ludovic  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Thomassin, Jean-Michel ;  University of Liège - ULiège > Department of Chemistry > Center for Education and Research on Macromolecules (CERM)
Nguyen, Van Dung  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
Experimental and computational micro–mechanical investigations of compressive properties of polypropylene/multi–walled carbon nanotubes nanocomposite foams
Publication date :
December 2015
Journal title :
Mechanics of Materials
ISSN :
0167-6636
Publisher :
Elsevier Science
Volume :
91
Issue :
Part 1
Pages :
95-118
Peer reviewed :
Peer Reviewed verified by ORBi
Tags :
CÉCI : Consortium des Équipements de Calcul Intensif
Name of the research project :
ARC 09/14-02 BRIDGING - From imaging to geometrical modelling of complex micro structured materials: Bridging computational engineering and material science
Funders :
Communauté française de Belgique : Direction Générale de l'Enseignement Non Obligatoire et de la Recherche Scientifique - DGENORS
CÉCI - Consortium des Équipements de Calcul Intensif [BE]
Available on ORBi :
since 03 August 2015

Statistics


Number of views
307 (90 by ULiège)
Number of downloads
706 (23 by ULiège)

Scopus citations®
 
18
Scopus citations®
without self-citations
16
OpenCitations
 
13

Bibliography


Similar publications



Contact ORBi