Unpublished conference/Abstract (Scientific congresses and symposiums)
A Non-Local Damage-Enhanced Incremental-Secant Mean-Field-Homogenization For Composite Laminate Failure Predictions
Wu, Ling; Adam, Laurent; Doghri, Issam et al.
20159th European Solid Mechanics Conference, ESMC15
 

Files


Full Text
2015_ESMC_MFH.pdf
Author postprint (126.04 kB)
Download
Annexes
2015_ESMC_MFH.pdf
Publisher postprint (2.19 MB)
Download

All documents in ORBi are protected by a user license.

Send to



Details



Keywords :
Multi-scale; Composite laminates; Damage
Abstract :
[en] Recently, the authors have presented an incremental-secant mean-field homogenisation (MFH) process for non-linear composite materials [4]. In this formulation, a virtual elastic unloading is applied to evaluate the virtual residual stress and strain states reached in each elasto-plastic phase. These virtual states are then used as a starting point to apply a secant homogenization method. This incremental-secant MFH process can handle non-proportional and nonmonotonic loadings, and naturally possesses an isotropic instantaneous stiffness operator to be used in the Eshelby tensor. This incremental-secant MFH homogenization can account for the first and second statistical moment estimation of the current yield stress in the composite phases during the computation of the plastic flow. When accounting for a second statistical moment estimation, the plastic yield in the composite material phases is captured with a higher accuracy, improving the predictions, mainly in the case of short fiber composite materials [6], see Fig. 1(a). The incremental MFH can handle material softening when extended to include a damage model. Indeed, as the secant formulation is applied from an unloaded state, the inclusion phase can be elastically unloaded during the softening of the matrix phase, contrarily to the case of the incremental-tangent method [3, 5], see Fig. 1(b). Moreover, when formulating the damage model in the composite phases in a non-local way, as with the non-local implicit approach, [1, 2], the MFH scheme can be used to model strain localization in composite structures [5], without suffering from the loss of the solution uniqueness.
Disciplines :
Mechanical engineering
Materials science & engineering
Author, co-author :
Wu, Ling ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Adam, Laurent;  e-Xstream Engineering S.A.
Doghri, Issam;  Université Catholique de Louvain - UCL
Noels, Ludovic  ;  Université de Liège > Département d'aérospatiale et mécanique > Computational & Multiscale Mechanics of Materials (CM3)
Language :
English
Title :
A Non-Local Damage-Enhanced Incremental-Secant Mean-Field-Homogenization For Composite Laminate Failure Predictions
Publication date :
06 July 2015
Number of pages :
2
Event name :
9th European Solid Mechanics Conference, ESMC15
Event organizer :
EuroMech
Event place :
Madrid, Spain
Event date :
July 6-10 July, 2015
Audience :
International
References of the abstract :
Keynote
European Projects :
FP7 - 235303 - MATERA+ - ERA-NET Plus on Materials Research
Name of the research project :
The research has been funded by the Walloon Region under the agreement SIMUCOMP no 1017232 (CT-EUC 2010-10-12) in the context of the ERA-NET +, Matera + framework, and by the F. R. S. - F. N. R. S. under the project number T.1015.14.
Funders :
Service public de Wallonie : Direction générale opérationnelle de l'économie, de l'emploi et de la recherche - DG06
CE - Commission Européenne [BE]
Available on ORBi :
since 21 July 2015

Statistics


Number of views
73 (8 by ULiège)
Number of downloads
111 (3 by ULiège)

Bibliography


Similar publications



Contact ORBi