Reference : COMPUTATION OF NONLINEAR NORMAL MODES, PART I: NUMERICAL CONTINUATION IN MATLAB
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Mechanical engineering
Engineering, computing & technology : Computer science
Physical, chemical, mathematical & earth Sciences : Mathematics
Physical, chemical, mathematical & earth Sciences : Physics
http://hdl.handle.net/2268/18260
COMPUTATION OF NONLINEAR NORMAL MODES, PART I: NUMERICAL CONTINUATION IN MATLAB
English
Peeters, Maxime [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures >]
Viguié, Régis mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures >]
Serandour, Guillaume mailto [ > > ]
Kerschen, Gaëtan mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > Laboratoire de structures et systèmes spatiaux >]
Golinval, Jean-Claude mailto [Université de Liège - ULg > Département d'aérospatiale et mécanique > LTAS - Vibrations et identification des structures >]
2008
Sixth EUROMECH Nonlinear Dynamics Conference, Saint Petersbourg, 2008
Yes
International
Sixth EUROMECH Nonlinear Dynamics Conference
June, 30–July, 4 2008
Saint-Petersburg
Russia
[en] Nonlinear normal modes ; periodic solution ; numerical computation ; shooting ; continuation techniques
[en] The concept of nonlinear normal modes (NNMs) is discussed in the present paper and its companion, Part II. Because there is virtually no application of the NNMs to large-scale engineering structures, these papers are an attempt to highlight one aspect that might drive their development in the future. Specifically, we support that numerical methods for the continuation of periodic solutions pave the way for an effective and practical computation of NNMs. In this context, we show that the NNM computation is possible with limited implementation effort. The proposed algorithm, implemented in MATLAB, relies on two main techniques, namely a shooting procedure and a method for the continuation of NNM motions. The algorithm is demonstrated using a 2DOF nonlinear system. A comparison with the results given by the AUTO software is achieved in Part II.
Researchers ; Professionals ; Students
http://hdl.handle.net/2268/18260

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Restricted access
P20_2008_SaintPetersburg_ENOC_Part1.pdfPublisher postprint212.66 kBRequest copy

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.