No full text
Poster (Scientific congresses and symposiums)
Magnetospheric modes and magnetic reconnection.
Hubert, Benoît; Milan, S.E.; Cowley, S.W.H.
201411th European Space Weather Weak
Editorial reviewed
 

Files


Full Text
No document available.

Send to



Details



Abstract :
[en] We combine imaging of the proton aurora from the SI12-IMAGE instrument with measurement of the ionospheric convection from the SuperDARN radar network to analyze the cycle of magnetic flux opening and closure of the Earth magnetosphere. Interaction between the solar wind and the Earth geomagnetic environment causes a reconfiguration of the magnetic field that connects the interplanetary magnetic field (IMF) to the geomagnetic field. This reconnection process produces open magnetic field lines (i.e. field lines of the magnetosphere that close through the interplanetary medium) that are dragged to the magnetotail by the solar wind flow, where they eventually reconnect again, back to a closed topology. The SI12 imaging of the Doppler-shifted Lyman-α emission of the proton aurora is used to estimate the location of the boundary separating open and closed field lines at ionospheric altitude. We then estimate the open magnetic flux of the Earth magnetosphere, encircled by this boundary. The rate of reconnection causing a variation of the open magnetic flux can be expressed as a voltage in application of Faraday’s law. This voltage is measured along the open/closed field line boundary determined from the imaging data. The electric field associated with the voltage has two origins: motion of the boundary and the ionospheric field. We use the ionospheric electric field deduced from ionospheric convection measurement from the SuperDARN to estimate the reconnection voltage at the magnetopause (flux opening) and in the magnetotail (flux closure) accounting for the motion of the open/closed field line boundary determined from the SI12 images. The method is applied during substorms, steady geomagnetic convection intervals, sawtooth events and geomagnetic storms. These different intervals are characterized by different values of open flux and reconnection rates, as a result of different coupling between the solar wind and the geomagnetic environment. We interpret these differences as different dynamic modes of the magnetospheric system. Shock-induced flux closure events are also presented, as an exceptional situation that differs from the modes presented above.
Disciplines :
Space science, astronomy & astrophysics
Author, co-author :
Hubert, Benoît  ;  Université de Liège > Département d'astrophys., géophysique et océanographie (AGO) > Labo de physique atmosphérique et planétaire (LPAP)
Milan, S.E.
Cowley, S.W.H.
Language :
English
Title :
Magnetospheric modes and magnetic reconnection.
Publication date :
November 2014
Event name :
11th European Space Weather Weak
Event date :
17-21 November 2014
Audience :
International
Peer reviewed :
Editorial reviewed
Available on ORBi :
since 03 April 2015

Statistics


Number of views
54 (4 by ULiège)
Number of downloads
0 (0 by ULiège)

Bibliography


Similar publications



Contact ORBi