Reference : Random forests with random projections of the output space for high dimensional multi...
Scientific congresses and symposiums : Paper published in a book
Engineering, computing & technology : Computer science
http://hdl.handle.net/2268/172146
Random forests with random projections of the output space for high dimensional multi-label classification
English
Joly, Arnaud mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
Geurts, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Algorith. des syst. en interaction avec le monde physique >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
15-Sep-2014
Machine Learning and Knowledge Discovery in Databases
Yes
No
International
7th European machine learning and data mining conference (ECML-PKDD 2014)
From 15 September au 19 September 2014
Nancy
France
[en] Machine learning ; Multilabel ; Random forest ; Random projections
[en] We adapt the idea of random projections applied to the out- put space, so as to enhance tree-based ensemble methods in the context of multi-label classification. We show how learning time complexity can be reduced without affecting computational complexity and accuracy of predictions. We also show that random output space projections may be used in order to reach different bias-variance tradeoffs, over a broad panel of benchmark problems, and that this may lead to improved accuracy while reducing significantly the computational burden of the learning stage.
Systems and Modeling Research Unit
Fonds de la Recherche Scientifique (Communauté française de Belgique) - F.R.S.-FNRS ; PASCAL2 ; IUAP DYSCO ; CECI
Researchers ; Professionals
http://hdl.handle.net/2268/172146
http://arxiv.org/abs/1404.3581
http://github.com/arjoly/random-output-trees
Source code is available at https://github.com/arjoly/random-output-trees in bsd license

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
ajoly2014.pdfAuthor postprint666.98 kBView/Open

Additional material(s):

File Commentary Size Access
Open access
poster.pdfPoster611.81 kBView/Open
Open access
slides.pdfSlides from the ECML presentation659.26 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.