Reference : Gene regulatory network inference from systems genetics data using tree-based methods
Parts of books : Contribution to collective works
Engineering, computing & technology : Computer science
Life sciences : Biochemistry, biophysics & molecular biology
http://hdl.handle.net/2268/156498
Gene regulatory network inference from systems genetics data using tree-based methods
English
Huynh-Thu, Vân Anh mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation > >]
Wehenkel, Louis mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation > >]
Geurts, Pierre mailto [Université de Liège - ULg > Dép. d'électric., électron. et informat. (Inst.Montefiore) > Systèmes et modélisation >]
2013
Gene Network Inference - Verification of Methods for Systems Genetics Data
de la Fuente, Alberto
Springer
63-85
Yes
978-3-642-45160-7
[en] Bioinformatics ; Machine Learning ; Systems Biology
[en] One of the pressing open problems of computational systems biology is the elucidation of the topology of gene regulatory networks (GRNs). In an attempt to solve this problem, the idea of systems genetics is to exploit the natural variations that exist between the DNA sequences of related individuals and that can represent the randomized and multifactorial perturbations necessary to recover GRNs.
In this chapter, we present new methods, called GENIE3-SG-joint and GENIE3- SG-sep, for the inference of GRNs from systems genetics data. Experiments on the artificial data of the StatSeq benchmark and of the DREAM5 Systems Genetics challenge show that exploiting jointly expression and genetic data is very helpful for recovering GRNs, and one of our methods outperforms by a large extent the official best performing method of the DREAM5 challenge.
http://hdl.handle.net/2268/156498

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
sysgen-chapter5-final.pdfPublisher postprint1.56 MBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.