Reference : Dual effects of an extra disulfide bond on the activity and stability of a cold-adapt...
Scientific journals : Article
Life sciences : Biochemistry, biophysics & molecular biology
http://hdl.handle.net/2268/15167
Dual effects of an extra disulfide bond on the activity and stability of a cold-adapted alpha-amylase
English
D'Amico, Salvino [Université de Liège - ULg > > GIGA-Research >]
Gerday, Charles mailto [Université de Liège - ULg > Services généraux (Faculté des sciences) > Relations académiques et scientifiques (Sciences) >]
Feller, Georges mailto [Université de Liège - ULg > Département des sciences de la vie > Labo de biochimie >]
29-Nov-2002
Journal of Biological Chemistry
Amer Soc Biochemistry Molecular Biology Inc
277
48
46110-46115
Yes (verified by ORBi)
International
0021-9258
Bethesda
[en] Chloride-dependent alpha-amylases constitute a well conserved family of enzymes thereby allowing investigation of the characteristics of each member to understand, for example, relevant properties required for environmental adaptation. In this context, we have constructed a double mutant (Q58C/A99C) of the cold-active and heat-labile alpha-amylase from the Antarctic bacterium Pseudoalteromonas haloplanktis, defined on the basis of its strong similarity with the mesophilic enzyme from pig pancreas. This mutant was characterized to understand the role of an extra disulfide bond specific to warm-blooded animals and located near the entrance of the catalytic cleft. We show that the catalytic parameters of the mutant are drastically modified and similar to those of the mesophilic enzyme. Calorimetric studies demonstrated that the mutant is globally stabilized (DeltaDeltaG = 1.87 kcal/mol at 20 degrees C) when compared with the wild-type enzyme, although the melting point (T-m) was not increased. Moreover, fluorescence quenching experiments indicate a more compact structure for the mutated a-amylase. However, the strain imposed on the active site architecture induces a 2-fold higher thermal inactivation rate at 45 degreesC as well as the appearance of a less stable calorimetric domain. It is concluded that stabilization by the extra disulfide bond arises from an enthalpy-entropy compensation effect favoring the enthalpic contribution.
http://hdl.handle.net/2268/15167
10.1074/jbc.M207253200

File(s) associated to this reference

Fulltext file(s):

FileCommentaryVersionSizeAccess
Open access
JBC_2002_SS.pdfPublisher postprint134.96 kBView/Open

Bookmark and Share SFX Query

All documents in ORBi are protected by a user license.